Properties

Label 43264f
Number of curves 22
Conductor 4326443264
CM Q(2)\Q(\sqrt{-2})
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Elliptic curves in class 43264f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
43264.c2 43264f1 [0,1,0,563,4369][0, 1, 0, -563, 4369] 80008000 24713262082471326208 [2][2] 1881618816 0.531930.53193 Γ0(N)\Gamma_0(N)-optimal 8-8
43264.c1 43264f2 [0,1,0,2253,37205][0, 1, 0, -2253, -37205] 80008000 158164877312158164877312 [2][2] 3763237632 0.878500.87850   8-8

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 43264f have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
131311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+T+3T2 1 + T + 3 T^{2} 1.3.b
55 1+T+5T2 1 + T + 5 T^{2} 1.5.b
77 13T+7T2 1 - 3 T + 7 T^{2} 1.7.ad
1111 1+2T+11T2 1 + 2 T + 11 T^{2} 1.11.c
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 43264f has complex multiplication by an order in the imaginary quadratic field Q(2)\Q(\sqrt{-2}) .

Modular form 43264.2.a.f

Copy content sage:E.q_eigenform(10)
 
q2q3+q9+6q116q17+2q19+O(q20)q - 2 q^{3} + q^{9} + 6 q^{11} - 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.