sage:E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 43264f
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
CM discriminant |
43264.c2 |
43264f1 |
[0,1,0,−563,4369] |
8000 |
2471326208 |
[2] |
18816 |
0.53193
|
Γ0(N)-optimal |
−8 |
43264.c1 |
43264f2 |
[0,1,0,−2253,−37205] |
8000 |
158164877312 |
[2] |
37632 |
0.87850
|
|
−8 |
sage:E.rank()
The elliptic curves in class 43264f have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
13 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+T+3T2 |
1.3.b
|
5 |
1+T+5T2 |
1.5.b
|
7 |
1−3T+7T2 |
1.7.ad
|
11 |
1+2T+11T2 |
1.11.c
|
17 |
1+3T+17T2 |
1.17.d
|
19 |
1+19T2 |
1.19.a
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
Each elliptic curve in class 43264f has complex multiplication by an order in the imaginary quadratic field
Q(−2).
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.