Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 43264f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
43264.c2 | 43264f1 | \([0, 1, 0, -563, 4369]\) | \(8000\) | \(2471326208\) | \([2]\) | \(18816\) | \(0.53193\) | \(\Gamma_0(N)\)-optimal | \(-8\) |
43264.c1 | 43264f2 | \([0, 1, 0, -2253, -37205]\) | \(8000\) | \(158164877312\) | \([2]\) | \(37632\) | \(0.87850\) | \(-8\) |
Rank
sage: E.rank()
The elliptic curves in class 43264f have rank \(1\).
Complex multiplication
Each elliptic curve in class 43264f has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-2}) \).Modular form 43264.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.