Properties

Label 43350dd
Number of curves 88
Conductor 4335043350
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dd1")
 
E.isogeny_class()
 

Elliptic curves in class 43350dd

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
43350.cv8 43350dd1 [1,0,0,10687,1306617][1, 0, 0, 10687, 1306617] 357911/2160357911/2160 814642953750000-814642953750000 [2][2] 221184221184 1.54301.5430 Γ0(N)\Gamma_0(N)-optimal
43350.cv6 43350dd2 [1,0,0,133813,17057117][1, 0, 0, -133813, 17057117] 702595369/72900702595369/72900 2749419968906250027494199689062500 [2,2][2, 2] 442368442368 1.88961.8896  
43350.cv7 43350dd3 [1,0,0,97688,38467008][1, 0, 0, -97688, -38467008] 273359449/1536000-273359449/1536000 579301656000000000-579301656000000000 [2][2] 663552663552 2.09232.0923  
43350.cv5 43350dd4 [1,0,0,495063,115521633][1, 0, 0, -495063, -115521633] 35578826569/531441035578826569/5314410 20043271573326562502004327157332656250 [2][2] 884736884736 2.23622.2362  
43350.cv4 43350dd5 [1,0,0,2084563,1158245867][1, 0, 0, -2084563, 1158245867] 2656166199049/337502656166199049/33750 1272879615234375012728796152343750 [2][2] 884736884736 2.23622.2362  
43350.cv3 43350dd6 [1,0,0,2409688,1437227008][1, 0, 0, -2409688, -1437227008] 4102915888729/90000004102915888729/9000000 33943456406250000003394345640625000000 [2,2][2, 2] 13271041327104 2.43892.4389  
43350.cv1 43350dd7 [1,0,0,38534688,92074852008][1, 0, 0, -38534688, -92074852008] 16778985534208729/8100016778985534208729/81000 3054911076562500030549110765625000 [2][2] 26542082654208 2.78552.7855  
43350.cv2 43350dd8 [1,0,0,3276688,310994008][1, 0, 0, -3276688, -310994008] 10316097499609/585937500010316097499609/5859375000 22098604431152343750002209860443115234375000 [2][2] 26542082654208 2.78552.7855  

Rank

sage: E.rank()
 

The elliptic curves in class 43350dd have rank 11.

Complex multiplication

The elliptic curves in class 43350dd do not have complex multiplication.

Modular form 43350.2.a.dd

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q64q7+q8+q9+q122q134q14+q16+q184q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} + q^{9} + q^{12} - 2 q^{13} - 4 q^{14} + q^{16} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1234461212216223663611212244421214631242124161236326612212643122141264123241)\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.