y 2 + x y = x 3 − 495063 x − 115521633 y^2+xy=x^3-495063x-115521633 y 2 + x y = x 3 − 4 9 5 0 6 3 x − 1 1 5 5 2 1 6 3 3
(homogenize , simplify )
y 2 z + x y z = x 3 − 495063 x z 2 − 115521633 z 3 y^2z+xyz=x^3-495063xz^2-115521633z^3 y 2 z + x y z = x 3 − 4 9 5 0 6 3 x z 2 − 1 1 5 5 2 1 6 3 3 z 3
(dehomogenize , simplify )
y 2 = x 3 − 641601675 x − 5387852504250 y^2=x^3-641601675x-5387852504250 y 2 = x 3 − 6 4 1 6 0 1 6 7 5 x − 5 3 8 7 8 5 2 5 0 4 2 5 0
(homogenize , minimize )
sage: E = EllipticCurve([1, 0, 0, -495063, -115521633])
gp: E = ellinit([1, 0, 0, -495063, -115521633])
magma: E := EllipticCurve([1, 0, 0, -495063, -115521633]);
oscar: E = elliptic_curve([1, 0, 0, -495063, -115521633])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 1197 / 4 , 20547 / 8 ) (-1197/4, 20547/8) ( − 1 1 9 7 / 4 , 2 0 5 4 7 / 8 ) 4.2046354256504368576325014276 4.2046354256504368576325014276 4 . 2 0 4 6 3 5 4 2 5 6 5 0 4 3 6 8 5 7 6 3 2 5 0 1 4 2 7 6 ∞ \infty ∞
( − 2097 / 4 , 2097 / 8 ) (-2097/4, 2097/8) ( − 2 0 9 7 / 4 , 2 0 9 7 / 8 ) 0 0 0 2 2 2
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
43350 43350 4 3 3 5 0 = 2 ⋅ 3 ⋅ 5 2 ⋅ 1 7 2 2 \cdot 3 \cdot 5^{2} \cdot 17^{2} 2 ⋅ 3 ⋅ 5 2 ⋅ 1 7 2
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
2004327157332656250 2004327157332656250 2 0 0 4 3 2 7 1 5 7 3 3 2 6 5 6 2 5 0 = 2 ⋅ 3 12 ⋅ 5 7 ⋅ 1 7 6 2 \cdot 3^{12} \cdot 5^{7} \cdot 17^{6} 2 ⋅ 3 1 2 ⋅ 5 7 ⋅ 1 7 6
sage: E.discriminant().factor()
j-invariant :
j j j
=
35578826569 5314410 \frac{35578826569}{5314410} 5 3 1 4 4 1 0 3 5 5 7 8 8 2 6 5 6 9 = 2 − 1 ⋅ 3 − 12 ⋅ 5 − 1 ⋅ 1 1 3 ⋅ 1 3 3 ⋅ 2 3 3 2^{-1} \cdot 3^{-12} \cdot 5^{-1} \cdot 11^{3} \cdot 13^{3} \cdot 23^{3} 2 − 1 ⋅ 3 − 1 2 ⋅ 5 − 1 ⋅ 1 1 3 ⋅ 1 3 3 ⋅ 2 3 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 2.2361854691274550620167666787 2.2361854691274550620167666787 2 . 2 3 6 1 8 5 4 6 9 1 2 7 4 5 5 0 6 2 0 1 6 7 6 6 6 7 8 7
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.014859840882296834591619703151 0.014859840882296834591619703151 0 . 0 1 4 8 5 9 8 4 0 8 8 2 2 9 6 8 3 4 5 9 1 6 1 9 7 0 3 1 5 1
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0339287621454463 1.0339287621454463 1 . 0 3 3 9 2 8 7 6 2 1 4 5 4 4 6 3
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.771998529409044 4.771998529409044 4 . 7 7 1 9 9 8 5 2 9 4 0 9 0 4 4
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 4.2046354256504368576325014276 4.2046354256504368576325014276 4 . 2 0 4 6 3 5 4 2 5 6 5 0 4 3 6 8 5 7 6 3 2 5 0 1 4 2 7 6
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.18178491761542635719889200124 0.18178491761542635719889200124 0 . 1 8 1 7 8 4 9 1 7 6 1 5 4 2 6 3 5 7 1 9 8 8 9 2 0 0 1 2 4
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 48 48 4 8
= 1 ⋅ ( 2 2 ⋅ 3 ) ⋅ 2 ⋅ 2 1\cdot( 2^{2} \cdot 3 )\cdot2\cdot2 1 ⋅ ( 2 2 ⋅ 3 ) ⋅ 2 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 9.1720716534572135824311138428 9.1720716534572135824311138428 9 . 1 7 2 0 7 1 6 5 3 4 5 7 2 1 3 5 8 2 4 3 1 1 1 3 8 4 2 8
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
9.172071653 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.181785 ⋅ 4.204635 ⋅ 48 2 2 ≈ 9.172071653 \displaystyle 9.172071653 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.181785 \cdot 4.204635 \cdot 48}{2^2} \approx 9.172071653 9 . 1 7 2 0 7 1 6 5 3 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 1 8 1 7 8 5 ⋅ 4 . 2 0 4 6 3 5 ⋅ 4 8 ≈ 9 . 1 7 2 0 7 1 6 5 3
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
43350.2.a.cv
q + q 2 + q 3 + q 4 + q 6 − 4 q 7 + q 8 + q 9 + q 12 − 2 q 13 − 4 q 14 + q 16 + q 18 − 4 q 19 + O ( q 20 ) q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} + q^{9} + q^{12} - 2 q^{13} - 4 q^{14} + q^{16} + q^{18} - 4 q^{19} + O(q^{20}) q + q 2 + q 3 + q 4 + q 6 − 4 q 7 + q 8 + q 9 + q 1 2 − 2 q 1 3 − 4 q 1 4 + q 1 6 + q 1 8 − 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1242, 799, 1037, 1412], [2017, 24, 2016, 25], [1, 12, 12, 145], [511, 1224, 510, 1], [968, 357, 1683, 1886], [15, 106, 734, 971], [1799, 0, 0, 2039], [1, 24, 0, 1], [1021, 1224, 1292, 749], [1, 0, 24, 1]]
GL(2,Integers(2040)).subgroup(gens)
Gens := [[1242, 799, 1037, 1412], [2017, 24, 2016, 25], [1, 12, 12, 145], [511, 1224, 510, 1], [968, 357, 1683, 1886], [15, 106, 734, 971], [1799, 0, 0, 2039], [1, 24, 0, 1], [1021, 1224, 1292, 749], [1, 0, 24, 1]];
sub<GL(2,Integers(2040))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 2040 = 2 3 ⋅ 3 ⋅ 5 ⋅ 17 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 2 0 4 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 1 7 , index 384 384 3 8 4 , genus 5 5 5 , and generators
( 1242 799 1037 1412 ) , ( 2017 24 2016 25 ) , ( 1 12 12 145 ) , ( 511 1224 510 1 ) , ( 968 357 1683 1886 ) , ( 15 106 734 971 ) , ( 1799 0 0 2039 ) , ( 1 24 0 1 ) , ( 1021 1224 1292 749 ) , ( 1 0 24 1 ) \left(\begin{array}{rr}
1242 & 799 \\
1037 & 1412
\end{array}\right),\left(\begin{array}{rr}
2017 & 24 \\
2016 & 25
\end{array}\right),\left(\begin{array}{rr}
1 & 12 \\
12 & 145
\end{array}\right),\left(\begin{array}{rr}
511 & 1224 \\
510 & 1
\end{array}\right),\left(\begin{array}{rr}
968 & 357 \\
1683 & 1886
\end{array}\right),\left(\begin{array}{rr}
15 & 106 \\
734 & 971
\end{array}\right),\left(\begin{array}{rr}
1799 & 0 \\
0 & 2039
\end{array}\right),\left(\begin{array}{rr}
1 & 24 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1021 & 1224 \\
1292 & 749
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
24 & 1
\end{array}\right) ( 1 2 4 2 1 0 3 7 7 9 9 1 4 1 2 ) , ( 2 0 1 7 2 0 1 6 2 4 2 5 ) , ( 1 1 2 1 2 1 4 5 ) , ( 5 1 1 5 1 0 1 2 2 4 1 ) , ( 9 6 8 1 6 8 3 3 5 7 1 8 8 6 ) , ( 1 5 7 3 4 1 0 6 9 7 1 ) , ( 1 7 9 9 0 0 2 0 3 9 ) , ( 1 0 2 4 1 ) , ( 1 0 2 1 1 2 9 2 1 2 2 4 7 4 9 ) , ( 1 2 4 0 1 ) .
The torsion field K : = Q ( E [ 2040 ] ) K:=\Q(E[2040]) K : = Q ( E [ 2 0 4 0 ] ) is a degree-7219445760 7219445760 7 2 1 9 4 4 5 7 6 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 2040 Z ) \GL_2(\Z/2040\Z) GL 2 ( Z / 2 0 4 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
split multiplicative
4 4 4
7225 = 5 2 ⋅ 1 7 2 7225 = 5^{2} \cdot 17^{2} 7 2 2 5 = 5 2 ⋅ 1 7 2
3 3 3
split multiplicative
4 4 4
14450 = 2 ⋅ 5 2 ⋅ 1 7 2 14450 = 2 \cdot 5^{2} \cdot 17^{2} 1 4 4 5 0 = 2 ⋅ 5 2 ⋅ 1 7 2
5 5 5
additive
18 18 1 8
1734 = 2 ⋅ 3 ⋅ 1 7 2 1734 = 2 \cdot 3 \cdot 17^{2} 1 7 3 4 = 2 ⋅ 3 ⋅ 1 7 2
17 17 1 7
additive
146 146 1 4 6
150 = 2 ⋅ 3 ⋅ 5 2 150 = 2 \cdot 3 \cdot 5^{2} 1 5 0 = 2 ⋅ 3 ⋅ 5 2
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 3, 4, 6 and 12.
Its isogeny class 43350dd
consists of 8 curves linked by isogenies of
degrees dividing 12.
The minimal quadratic twist of this elliptic curve is
30a4 , its twist by 85 85 8 5 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 10 ) \Q(\sqrt{10}) Q ( 1 0 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
2 2 2
Q ( − 17 ) \Q(\sqrt{-17}) Q ( − 1 7 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
2 2 2
Q ( − 170 ) \Q(\sqrt{-170}) Q ( − 1 7 0 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
2 2 2
Q ( 85 ) \Q(\sqrt{85}) Q ( 8 5 )
Z / 6 Z \Z/6\Z Z / 6 Z
2.2.85.1-180.1-b4
4 4 4
Q ( 10 , − 17 ) \Q(\sqrt{10}, \sqrt{-17}) Q ( 1 0 , − 1 7 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
4 4 4
Q ( 10 , 34 ) \Q(\sqrt{10}, \sqrt{34}) Q ( 1 0 , 3 4 )
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
4 4 4
Q ( − 5 , − 17 ) \Q(\sqrt{-5}, \sqrt{-17}) Q ( − 5 , − 1 7 )
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
4 4 4
Q ( − 2 , 85 ) \Q(\sqrt{-2}, \sqrt{85}) Q ( − 2 , 8 5 )
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
6 6 6
6.0.6632550000.2
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
8 8 8
8.4.5473632256000000.3
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.432972864000000.99
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
deg 8
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
8.0.3421020160000.2
Z / 2 Z ⊕ Z / 12 Z \Z/2\Z \oplus \Z/12\Z Z / 2 Z ⊕ Z / 1 2 Z
not in database
12 12 1 2
deg 12
Z / 3 Z ⊕ Z / 6 Z \Z/3\Z \oplus \Z/6\Z Z / 3 Z ⊕ Z / 6 Z
not in database
12 12 1 2
deg 12
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
12 12 1 2
deg 12
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
12 12 1 2
deg 12
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 12 Z \Z/2\Z \oplus \Z/12\Z Z / 2 Z ⊕ Z / 1 2 Z
not in database
16 16 1 6
deg 16
Z / 24 Z \Z/24\Z Z / 2 4 Z
not in database
16 16 1 6
deg 16
Z / 24 Z \Z/24\Z Z / 2 4 Z
not in database
18 18 1 8
18.6.7630060045208671414551422812500000000.1
Z / 18 Z \Z/18\Z Z / 1 8 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.