Properties

Label 43350dd4
Conductor 4335043350
Discriminant 2.004×10182.004\times 10^{18}
j-invariant 355788265695314410 \frac{35578826569}{5314410}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3495063x115521633y^2+xy=x^3-495063x-115521633 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3495063xz2115521633z3y^2z+xyz=x^3-495063xz^2-115521633z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3641601675x5387852504250y^2=x^3-641601675x-5387852504250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -495063, -115521633])
 
gp: E = ellinit([1, 0, 0, -495063, -115521633])
 
magma: E := EllipticCurve([1, 0, 0, -495063, -115521633]);
 
oscar: E = elliptic_curve([1, 0, 0, -495063, -115521633])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1197/4,20547/8)(-1197/4, 20547/8)4.20463542565043685763250142764.2046354256504368576325014276\infty
(2097/4,2097/8)(-2097/4, 2097/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  43350 43350  = 23521722 \cdot 3 \cdot 5^{2} \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  20043271573326562502004327157332656250 = 2312571762 \cdot 3^{12} \cdot 5^{7} \cdot 17^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  355788265695314410 \frac{35578826569}{5314410}  = 21312511131332332^{-1} \cdot 3^{-12} \cdot 5^{-1} \cdot 11^{3} \cdot 13^{3} \cdot 23^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.23618546912745506201676667872.2361854691274550620167666787
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0148598408822968345916197031510.014859840882296834591619703151
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03392876214544631.0339287621454463
Szpiro ratio: σm\sigma_{m} ≈ 4.7719985294090444.771998529409044

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.20463542565043685763250142764.2046354256504368576325014276
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.181784917615426357198892001240.18178491761542635719889200124
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 48 48  = 1(223)22 1\cdot( 2^{2} \cdot 3 )\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 9.17207165345721358243111384289.1720716534572135824311138428
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

9.172071653L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1817854.20463548229.172071653\displaystyle 9.172071653 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.181785 \cdot 4.204635 \cdot 48}{2^2} \approx 9.172071653

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   43350.2.a.cv

q+q2+q3+q4+q64q7+q8+q9+q122q134q14+q16+q184q19+O(q20) q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} + q^{9} + q^{12} - 2 q^{13} - 4 q^{14} + q^{16} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 884736
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} split multiplicative -1 1 1 1
33 1212 I12I_{12} split multiplicative -1 1 12 12
55 22 I1I_{1}^{*} additive 1 2 7 1
1717 22 I0I_0^{*} additive 1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1242, 799, 1037, 1412], [2017, 24, 2016, 25], [1, 12, 12, 145], [511, 1224, 510, 1], [968, 357, 1683, 1886], [15, 106, 734, 971], [1799, 0, 0, 2039], [1, 24, 0, 1], [1021, 1224, 1292, 749], [1, 0, 24, 1]]
 
GL(2,Integers(2040)).subgroup(gens)
 
Gens := [[1242, 799, 1037, 1412], [2017, 24, 2016, 25], [1, 12, 12, 145], [511, 1224, 510, 1], [968, 357, 1683, 1886], [15, 106, 734, 971], [1799, 0, 0, 2039], [1, 24, 0, 1], [1021, 1224, 1292, 749], [1, 0, 24, 1]];
 
sub<GL(2,Integers(2040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2040=233517 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 , index 384384, genus 55, and generators

(124279910371412),(201724201625),(11212145),(51112245101),(96835716831886),(15106734971),(1799002039),(12401),(102112241292749),(10241)\left(\begin{array}{rr} 1242 & 799 \\ 1037 & 1412 \end{array}\right),\left(\begin{array}{rr} 2017 & 24 \\ 2016 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 511 & 1224 \\ 510 & 1 \end{array}\right),\left(\begin{array}{rr} 968 & 357 \\ 1683 & 1886 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 734 & 971 \end{array}\right),\left(\begin{array}{rr} 1799 & 0 \\ 0 & 2039 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1021 & 1224 \\ 1292 & 749 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2040])K:=\Q(E[2040]) is a degree-72194457607219445760 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2040Z)\GL_2(\Z/2040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 7225=52172 7225 = 5^{2} \cdot 17^{2}
33 split multiplicative 44 14450=252172 14450 = 2 \cdot 5^{2} \cdot 17^{2}
55 additive 1818 1734=23172 1734 = 2 \cdot 3 \cdot 17^{2}
1717 additive 146146 150=2352 150 = 2 \cdot 3 \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3, 4, 6 and 12.
Its isogeny class 43350dd consists of 8 curves linked by isogenies of degrees dividing 12.

Twists

The minimal quadratic twist of this elliptic curve is 30a4, its twist by 8585.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(10)\Q(\sqrt{10}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(17)\Q(\sqrt{-17}) Z/4Z\Z/4\Z not in database
22 Q(170)\Q(\sqrt{-170}) Z/4Z\Z/4\Z not in database
22 Q(85)\Q(\sqrt{85}) Z/6Z\Z/6\Z 2.2.85.1-180.1-b4
44 Q(10,17)\Q(\sqrt{10}, \sqrt{-17}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(10,34)\Q(\sqrt{10}, \sqrt{34}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
44 Q(5,17)\Q(\sqrt{-5}, \sqrt{-17}) Z/12Z\Z/12\Z not in database
44 Q(2,85)\Q(\sqrt{-2}, \sqrt{85}) Z/12Z\Z/12\Z not in database
66 6.0.6632550000.2 Z/6Z\Z/6\Z not in database
88 8.4.5473632256000000.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.432972864000000.99 Z/8Z\Z/8\Z not in database
88 deg 8 Z/8Z\Z/8\Z not in database
88 8.0.3421020160000.2 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database
1818 18.6.7630060045208671414551422812500000000.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split split add ord ss ord add ord ss ord ord ord ord ord ss
λ\lambda-invariant(s) 9 2 - 3 1,1 1 - 1 3,1 1 1 1 1 1 1,1
μ\mu-invariant(s) 1 0 - 0 0,0 0 - 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.