E = EllipticCurve("be1")
E.isogeny_class()
Elliptic curves in class 43560.be
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
43560.be1 |
43560ca4 |
[0,0,0,−34325643,−76226878442] |
3382175663521924/59189241375 |
78275593569507345792000 |
[2] |
5898240 |
3.1894
|
|
43560.be2 |
43560ca2 |
[0,0,0,−4378143,1714485058] |
28071778927696/12404390625 |
4101087530790756000000 |
[2,2] |
2949120 |
2.8429
|
|
43560.be3 |
43560ca1 |
[0,0,0,−3719298,2759544997] |
275361373935616/148240125 |
3063157970528898000 |
[2] |
1474560 |
2.4963
|
Γ0(N)-optimal |
43560.be4 |
43560ca3 |
[0,0,0,15027837,12772012462] |
283811208976796/217529296875 |
−287674490094750000000000 |
[2] |
5898240 |
3.1894
|
|
The elliptic curves in class 43560.be have
rank 0.
The elliptic curves in class 43560.be do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.