Properties

Label 43560.q
Number of curves 66
Conductor 4356043560
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 43560.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
43560.q1 43560br4 [0,0,0,57499563,167820468662][0, 0, 0, -57499563, 167820468662] 15897679904620804/247515897679904620804/2475 32730964206336003273096420633600 [2][2] 19660801966080 2.82362.8236  
43560.q2 43560br6 [0,0,0,30492363,63566853658][0, 0, 0, -30492363, -63566853658] 1185450336504002/260432662051185450336504002/26043266205 6888252234116646429696068882522341166464296960 [2][2] 39321603932160 3.17023.1702  
43560.q3 43560br3 [0,0,0,4138563,1774758062][0, 0, 0, -4138563, 1774758062] 5927735656804/24014900255927735656804/2401490025 31758821838443614464003175882183844361446400 [2,2][2, 2] 19660801966080 2.82362.8236  
43560.q4 43560br2 [0,0,0,3594063,2621673362][0, 0, 0, -3594063, 2621673362] 15529488955216/612562515529488955216/6125625 20252284102670400002025228410267040000 [2,2][2, 2] 983040983040 2.47712.4771  
43560.q5 43560br1 [0,0,0,190938,53675237][0, 0, 0, -190938, 53675237] 37256083456/38671875-37256083456/38671875 799095805818750000-799095805818750000 [2][2] 491520491520 2.13052.1305 Γ0(N)\Gamma_0(N)-optimal
43560.q6 43560br5 [0,0,0,13503237,12913790582][0, 0, 0, 13503237, 12913790582] 102949393183198/86815346805102949393183198/86815346805 229620202734149609564160-229620202734149609564160 [2][2] 39321603932160 3.17023.1702  

Rank

sage: E.rank()
 

The elliptic curves in class 43560.q have rank 00.

Complex multiplication

The elliptic curves in class 43560.q do not have complex multiplication.

Modular form 43560.2.a.q

sage: E.q_eigenform(10)
 
qq5+2q136q17+4q19+O(q20)q - q^{5} + 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(184248812484421242242124484218842481)\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.