Properties

Label 4368.u
Number of curves $2$
Conductor $4368$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 4368.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4368.u1 4368x2 \([0, 1, 0, -6228, -191160]\) \(104375673106000/69854967\) \(17882871552\) \([2]\) \(3840\) \(0.90583\)  
4368.u2 4368x1 \([0, 1, 0, -313, -4246]\) \(-212629504000/340075827\) \(-5441213232\) \([2]\) \(1920\) \(0.55926\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4368.u have rank \(0\).

Complex multiplication

The elliptic curves in class 4368.u do not have complex multiplication.

Modular form 4368.2.a.u

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{7} + q^{9} + 2 q^{11} - q^{13} + 4 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.