sage:E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 4368.u
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
4368.u1 |
4368x2 |
[0,1,0,−6228,−191160] |
104375673106000/69854967 |
17882871552 |
[2] |
3840 |
0.90583
|
|
4368.u2 |
4368x1 |
[0,1,0,−313,−4246] |
−212629504000/340075827 |
−5441213232 |
[2] |
1920 |
0.55926
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 4368.u have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
7 | 1−T |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+5T2 |
1.5.a
|
11 |
1−2T+11T2 |
1.11.ac
|
17 |
1−4T+17T2 |
1.17.ae
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+2T+23T2 |
1.23.c
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 4368.u do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.