Properties

Label 4368.u
Number of curves 22
Conductor 43684368
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Elliptic curves in class 4368.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4368.u1 4368x2 [0,1,0,6228,191160][0, 1, 0, -6228, -191160] 104375673106000/69854967104375673106000/69854967 1788287155217882871552 [2][2] 38403840 0.905830.90583  
4368.u2 4368x1 [0,1,0,313,4246][0, 1, 0, -313, -4246] 212629504000/340075827-212629504000/340075827 5441213232-5441213232 [2][2] 19201920 0.559260.55926 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4368.u have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331T1 - T
771T1 - T
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+5T2 1 + 5 T^{2} 1.5.a
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1717 14T+17T2 1 - 4 T + 17 T^{2} 1.17.ae
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+2T+23T2 1 + 2 T + 23 T^{2} 1.23.c
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4368.u do not have complex multiplication.

Modular form 4368.2.a.u

Copy content sage:E.q_eigenform(10)
 
q+q3+q7+q9+2q11q13+4q174q19+O(q20)q + q^{3} + q^{7} + q^{9} + 2 q^{11} - q^{13} + 4 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.