Show commands:
SageMath
E = EllipticCurve("y1")
E.isogeny_class()
Elliptic curves in class 4368.y
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4368.y1 | 4368m4 | \([0, 1, 0, -13592, 605412]\) | \(271210066309732/51597\) | \(52835328\) | \([4]\) | \(4096\) | \(0.87403\) | |
4368.y2 | 4368m3 | \([0, 1, 0, -1632, -11100]\) | \(469732169092/224827239\) | \(230223092736\) | \([2]\) | \(4096\) | \(0.87403\) | |
4368.y3 | 4368m2 | \([0, 1, 0, -852, 9180]\) | \(267492843088/3651921\) | \(934891776\) | \([2, 2]\) | \(2048\) | \(0.52746\) | |
4368.y4 | 4368m1 | \([0, 1, 0, -7, 392]\) | \(-2725888/4198467\) | \(-67175472\) | \([2]\) | \(1024\) | \(0.18089\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4368.y have rank \(0\).
Complex multiplication
The elliptic curves in class 4368.y do not have complex multiplication.Modular form 4368.2.a.y
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.