Properties

Label 4368.y
Number of curves $4$
Conductor $4368$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("y1")
 
E.isogeny_class()
 

Elliptic curves in class 4368.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4368.y1 4368m4 \([0, 1, 0, -13592, 605412]\) \(271210066309732/51597\) \(52835328\) \([4]\) \(4096\) \(0.87403\)  
4368.y2 4368m3 \([0, 1, 0, -1632, -11100]\) \(469732169092/224827239\) \(230223092736\) \([2]\) \(4096\) \(0.87403\)  
4368.y3 4368m2 \([0, 1, 0, -852, 9180]\) \(267492843088/3651921\) \(934891776\) \([2, 2]\) \(2048\) \(0.52746\)  
4368.y4 4368m1 \([0, 1, 0, -7, 392]\) \(-2725888/4198467\) \(-67175472\) \([2]\) \(1024\) \(0.18089\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4368.y have rank \(0\).

Complex multiplication

The elliptic curves in class 4368.y do not have complex multiplication.

Modular form 4368.2.a.y

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{7} + q^{9} + q^{13} + 2 q^{15} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.