Properties

Label 438080.z
Number of curves 22
Conductor 438080438080
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Elliptic curves in class 438080.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
438080.z1 438080z2 [0,1,0,65828821,205553835379][0, -1, 0, -65828821, -205553835379] 750484394082304/578125750484394082304/578125 2430256054604800000024302560546048000000 [][] 1891123218911232 3.02763.0276  
438080.z2 438080z1 [0,1,0,992981,147410675][0, -1, 0, -992981, -147410675] 2575826944/12663252575826944/1266325 5323232862006353920053232328620063539200 [][] 63037446303744 2.47832.4783 Γ0(N)\Gamma_0(N)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 438080.z1.

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 438080.z have rank 11.

Complex multiplication

The elliptic curves in class 438080.z do not have complex multiplication.

Modular form 438080.2.a.z

Copy content sage:E.q_eigenform(10)
 
qq3q5q72q9+3q114q13+q154q19+O(q20)q - q^{3} - q^{5} - q^{7} - 2 q^{9} + 3 q^{11} - 4 q^{13} + q^{15} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.