Show commands:
SageMath
E = EllipticCurve("ck1")
E.isogeny_class()
Elliptic curves in class 438080ck
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
438080.ck2 | 438080ck1 | \([0, 1, 0, -992981, 147410675]\) | \(2575826944/1266325\) | \(53232328620063539200\) | \([]\) | \(6303744\) | \(2.4783\) | \(\Gamma_0(N)\)-optimal* |
438080.ck1 | 438080ck2 | \([0, 1, 0, -65828821, 205553835379]\) | \(750484394082304/578125\) | \(24302560546048000000\) | \([]\) | \(18911232\) | \(3.0276\) | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 438080ck have rank \(0\).
Complex multiplication
The elliptic curves in class 438080ck do not have complex multiplication.Modular form 438080.2.a.ck
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.