Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 438702.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
438702.b1 | 438702b2 | \([1, 1, 0, -125304, -17124696]\) | \(752880570738483817/2933705016\) | \(847840749624\) | \([]\) | \(1990656\) | \(1.5018\) | |
438702.b2 | 438702b1 | \([1, 1, 0, -2139, -4761]\) | \(3747791557657/2146477806\) | \(620332085934\) | \([]\) | \(663552\) | \(0.95249\) | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 438702.b have rank \(2\).
Complex multiplication
The elliptic curves in class 438702.b do not have complex multiplication.Modular form 438702.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.