Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2+1222031x+45570607\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z+1222031xz^2+45570607z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+1583751501x+2102385964302\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generators and heights
$P$ | = | \(\left(961, 45439\right)\) | \(\left(\frac{37999}{4}, \frac{7419935}{8}\right)\) |
$\hat{h}(P)$ | ≈ | $1.7530220292116101604133098823$ | $2.2359425128342324436333371074$ |
Torsion generators
\( \left(-\frac{149}{4}, \frac{149}{8}\right) \)
Integral points
\( \left(-31, 2783\right) \), \( \left(-31, -2752\right) \), \( \left(961, 45439\right) \), \( \left(961, -46400\right) \), \( \left(1191, 55904\right) \), \( \left(1191, -57095\right) \), \( \left(3469, 212848\right) \), \( \left(3469, -216317\right) \)
Invariants
Conductor: | \( 438702 \) | = | $2 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-117672683921600888322 $ | = | $-1 \cdot 2 \cdot 3^{2} \cdot 11^{6} \cdot 17^{8} \cdot 23^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{8361347972165063}{4875084310338} \) | = | $2^{-1} \cdot 3^{-2} \cdot 11^{-6} \cdot 17^{-2} \cdot 23^{-2} \cdot 202967^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $2.5406315217639553836653922383\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $1.1240248497358473435406249294\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9583230676909829\dots$ | |||
Szpiro ratio: | $4.130497914644972\dots$ |
BSD invariants
Analytic rank: | $2$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $3.6400126898445312690400016729\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.11274232922283994928968293121\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 96 $ = $ 1\cdot2\cdot( 2 \cdot 3 )\cdot2^{2}\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L^{(2)}(E,1)/2! $ ≈ $ 9.8492042172904163136876742636 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 9.849204217 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.112742 \cdot 3.640013 \cdot 96}{2^2} \approx 9.849204217$
Modular invariants
Modular form 438702.2.a.l
For more coefficients, see the Downloads section to the right.
Modular degree: | 19243008 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$17$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$23$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4488 = 2^{3} \cdot 3 \cdot 11 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 409 & 4 \\ 818 & 9 \end{array}\right),\left(\begin{array}{rr} 1057 & 4 \\ 2114 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 4485 & 4 \\ 4484 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2993 & 4 \\ 1498 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1684 & 2809 \\ 561 & 3928 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 2243 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[4488])$ is a degree-$6353112268800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4488\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 289 = 17^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 13294 = 2 \cdot 17^{2} \cdot 23 \) |
$11$ | split multiplicative | $12$ | \( 39882 = 2 \cdot 3 \cdot 17^{2} \cdot 23 \) |
$17$ | additive | $162$ | \( 1518 = 2 \cdot 3 \cdot 11 \cdot 23 \) |
$23$ | nonsplit multiplicative | $24$ | \( 19074 = 2 \cdot 3 \cdot 11 \cdot 17^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 438702.l
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 25806.c2, its twist by $17$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.