Properties

Label 438702a
Number of curves $2$
Conductor $438702$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 438702a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
438702.a2 438702a1 \([1, 1, 0, 1361618, -723944780]\) \(11566328890520951/16088147361792\) \(-388328767027422363648\) \([2]\) \(39813120\) \(2.6364\) \(\Gamma_0(N)\)-optimal*
438702.a1 438702a2 \([1, 1, 0, -8626222, -7166101580]\) \(2940980566145956489/783792101714688\) \(18918835936793299913472\) \([2]\) \(79626240\) \(2.9829\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 438702a1.

Rank

sage: E.rank()
 

The elliptic curves in class 438702a have rank \(1\).

Complex multiplication

The elliptic curves in class 438702a do not have complex multiplication.

Modular form 438702.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - 4 q^{5} + q^{6} - 2 q^{7} - q^{8} + q^{9} + 4 q^{10} + q^{11} - q^{12} - 6 q^{13} + 2 q^{14} + 4 q^{15} + q^{16} - q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.