Properties

Label 438702a
Number of curves 22
Conductor 438702438702
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 438702a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
438702.a2 438702a1 [1,1,0,1361618,723944780][1, 1, 0, 1361618, -723944780] 11566328890520951/1608814736179211566328890520951/16088147361792 388328767027422363648-388328767027422363648 [2][2] 3981312039813120 2.63642.6364 Γ0(N)\Gamma_0(N)-optimal*
438702.a1 438702a2 [1,1,0,8626222,7166101580][1, 1, 0, -8626222, -7166101580] 2940980566145956489/7837921017146882940980566145956489/783792101714688 1891883593679329991347218918835936793299913472 [2][2] 7962624079626240 2.98292.9829 Γ0(N)\Gamma_0(N)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 438702a1.

Rank

sage: E.rank()
 

The elliptic curves in class 438702a have rank 11.

Complex multiplication

The elliptic curves in class 438702a do not have complex multiplication.

Modular form 438702.2.a.a

sage: E.q_eigenform(10)
 
qq2q3+q44q5+q62q7q8+q9+4q10+q11q126q13+2q14+4q15+q16q18+6q19+O(q20)q - q^{2} - q^{3} + q^{4} - 4 q^{5} + q^{6} - 2 q^{7} - q^{8} + q^{9} + 4 q^{10} + q^{11} - q^{12} - 6 q^{13} + 2 q^{14} + 4 q^{15} + q^{16} - q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.