Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 438702a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
438702.a2 | 438702a1 | \([1, 1, 0, 1361618, -723944780]\) | \(11566328890520951/16088147361792\) | \(-388328767027422363648\) | \([2]\) | \(39813120\) | \(2.6364\) | \(\Gamma_0(N)\)-optimal* |
438702.a1 | 438702a2 | \([1, 1, 0, -8626222, -7166101580]\) | \(2940980566145956489/783792101714688\) | \(18918835936793299913472\) | \([2]\) | \(79626240\) | \(2.9829\) | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 438702a have rank \(1\).
Complex multiplication
The elliptic curves in class 438702a do not have complex multiplication.Modular form 438702.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.