y2+xy=x3+x2−125304x−17124696
|
(homogenize, simplify) |
y2z+xyz=x3+x2z−125304xz2−17124696z3
|
(dehomogenize, simplify) |
y2=x3−162394659x−796533900066
|
(homogenize, minimize) |
sage: E = EllipticCurve([1, 1, 0, -125304, -17124696])
gp: E = ellinit([1, 1, 0, -125304, -17124696])
magma: E := EllipticCurve([1, 1, 0, -125304, -17124696]);
oscar: E = elliptic_curve([1, 1, 0, -125304, -17124696])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z⊕Z
magma: MordellWeilGroup(E);
P | h^(P) | Order |
(−205,97) | 0.96598995884768963220256501439 | ∞ |
(−10023/49,36714/343) | 3.1091903253455793493775583500 | ∞ |
(−205,108), (−205,97), (411,801), (411,−1212), (961,26926), (961,−27887), (3109803,5482469793), (3109803,−5485579596)
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor: |
N |
= |
438702 | = | 2⋅3⋅11⋅172⋅23 |
sage: E.conductor().factor()
|
Discriminant: |
Δ |
= |
847840749624 | = | 23⋅32⋅116⋅172⋅23 |
sage: E.discriminant().factor()
|
j-invariant: |
j |
= |
2933705016752880570738483817 | = | 2−3⋅3−2⋅73⋅11−6⋅17⋅23−1⋅505433 |
sage: E.j_invariant().factor()
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
magma: HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 1.5018012013543317265947685281 |
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 1.0295989773449623798865127585 |
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 0.9459165128632454 |
|
Szpiro ratio: |
σm | ≈ | 3.6045750699854615 |
|
Analytic rank: |
ran | = | 2
|
|
Mordell-Weil rank: |
r | = | 2
|
gp: [lower,upper] = ellrank(E)
|
Regulator: |
Reg(E/Q) | ≈ | 2.9934638393989108039178844997 |
G = E.gen \\ if available matdet(ellheightmatrix(E,G))
|
Real period: |
Ω | ≈ | 0.25375112198107688216894551741 |
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 12
= 1⋅2⋅(2⋅3)⋅1⋅1
|
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 1 |
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: |
L(2)(E,1)/2! | ≈ | 9.1151376942870690373936661599 |
r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
9.115137694≈L(2)(E,1)/2!=?#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈121⋅0.253751⋅2.993464⋅12≈9.115137694
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
438702.2.a.b
q−q2−q3+q4−3q5+q6+q7−q8+q9+3q10+q11−q12+2q13−q14+3q15+q16−q18+2q19+O(q20)
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 5 primes p
of bad reduction:
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[2763, 2, 6082, 7], [3, 4, 8, 11], [4, 3, 9, 7], [1, 0, 6, 1], [9379, 6, 9378, 7], [2857, 6, 8571, 19], [4693, 6, 4695, 19], [7039, 6, 2349, 19], [6650, 2739, 1183, 4699], [1, 6, 0, 1]]
GL(2,Integers(9384)).subgroup(gens)
Gens := [[2763, 2, 6082, 7], [3, 4, 8, 11], [4, 3, 9, 7], [1, 0, 6, 1], [9379, 6, 9378, 7], [2857, 6, 8571, 19], [4693, 6, 4695, 19], [7039, 6, 2349, 19], [6650, 2739, 1183, 4699], [1, 6, 0, 1]];
sub<GL(2,Integers(9384))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 9384=23⋅3⋅17⋅23, index 16, genus 0, and generators
(2763608227),(38411),(4937),(1601),(9379937867),(28578571619),(46934695619),(70392349619),(6650118327394699),(1061).
The torsion field K:=Q(E[9384]) is a degree-96440244240384 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/9384Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
nonsplit multiplicative |
4 |
6647=172⋅23 |
3 |
nonsplit multiplicative |
4 |
6647=172⋅23 |
11 |
split multiplicative |
12 |
39882=2⋅3⋅172⋅23 |
17 |
additive |
66 |
1518=2⋅3⋅11⋅23 |
23 |
nonsplit multiplicative |
24 |
19074=2⋅3⋅11⋅172 |
This curve has non-trivial cyclic isogenies of degree d for d=
3.
Its isogeny class 438702b
consists of 2 curves linked by isogenies of
degree 3.
This elliptic curve is its own minimal quadratic twist.
No Iwasawa invariant data is available for this curve.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.