Properties

Label 438702b2
Conductor 438702438702
Discriminant 847840749624847840749624
j-invariant 7528805707384838172933705016 \frac{752880570738483817}{2933705016}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2125304x17124696y^2+xy=x^3+x^2-125304x-17124696 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z125304xz217124696z3y^2z+xyz=x^3+x^2z-125304xz^2-17124696z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3162394659x796533900066y^2=x^3-162394659x-796533900066 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -125304, -17124696])
 
gp: E = ellinit([1, 1, 0, -125304, -17124696])
 
magma: E := EllipticCurve([1, 1, 0, -125304, -17124696]);
 
oscar: E = elliptic_curve([1, 1, 0, -125304, -17124696])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(205,97)(-205, 97)0.965989958847689632202565014390.96598995884768963220256501439\infty
(10023/49,36714/343)(-10023/49, 36714/343)3.10919032534557934937755835003.1091903253455793493775583500\infty

Integral points

(205,108) \left(-205, 108\right) , (205,97) \left(-205, 97\right) , (411,801) \left(411, 801\right) , (411,1212) \left(411, -1212\right) , (961,26926) \left(961, 26926\right) , (961,27887) \left(961, -27887\right) , (3109803,5482469793) \left(3109803, 5482469793\right) , (3109803,5485579596) \left(3109803, -5485579596\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  438702 438702  = 2311172232 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  847840749624847840749624 = 2332116172232^{3} \cdot 3^{2} \cdot 11^{6} \cdot 17^{2} \cdot 23
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  7528805707384838172933705016 \frac{752880570738483817}{2933705016}  = 233273116172315054332^{-3} \cdot 3^{-2} \cdot 7^{3} \cdot 11^{-6} \cdot 17 \cdot 23^{-1} \cdot 50543^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.50180120135433172659476852811.5018012013543317265947685281
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.02959897734496237988651275851.0295989773449623798865127585
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.94591651286324540.9459165128632454
Szpiro ratio: σm\sigma_{m} ≈ 3.60457506998546153.6045750699854615

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.99346383939891080391788449972.9934638393989108039178844997
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.253751121981076882168945517410.25375112198107688216894551741
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 12 12  = 12(23)11 1\cdot2\cdot( 2 \cdot 3 )\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 9.11513769428706903739366615999.1151376942870690373936661599
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

9.115137694L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2537512.99346412129.115137694\displaystyle 9.115137694 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.253751 \cdot 2.993464 \cdot 12}{1^2} \approx 9.115137694

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 438702.2.a.b

qq2q3+q43q5+q6+q7q8+q9+3q10+q11q12+2q13q14+3q15+q16q18+2q19+O(q20) q - q^{2} - q^{3} + q^{4} - 3 q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + 3 q^{10} + q^{11} - q^{12} + 2 q^{13} - q^{14} + 3 q^{15} + q^{16} - q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1990656
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I3I_{3} nonsplit multiplicative 1 1 3 3
33 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1111 66 I6I_{6} split multiplicative -1 1 6 6
1717 11 IIII additive 1 2 2 0
2323 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[2763, 2, 6082, 7], [3, 4, 8, 11], [4, 3, 9, 7], [1, 0, 6, 1], [9379, 6, 9378, 7], [2857, 6, 8571, 19], [4693, 6, 4695, 19], [7039, 6, 2349, 19], [6650, 2739, 1183, 4699], [1, 6, 0, 1]]
 
GL(2,Integers(9384)).subgroup(gens)
 
Gens := [[2763, 2, 6082, 7], [3, 4, 8, 11], [4, 3, 9, 7], [1, 0, 6, 1], [9379, 6, 9378, 7], [2857, 6, 8571, 19], [4693, 6, 4695, 19], [7039, 6, 2349, 19], [6650, 2739, 1183, 4699], [1, 6, 0, 1]];
 
sub<GL(2,Integers(9384))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 9384=2331723 9384 = 2^{3} \cdot 3 \cdot 17 \cdot 23 , index 1616, genus 00, and generators

(2763260827),(34811),(4397),(1061),(9379693787),(28576857119),(46936469519),(70396234919),(6650273911834699),(1601)\left(\begin{array}{rr} 2763 & 2 \\ 6082 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 9379 & 6 \\ 9378 & 7 \end{array}\right),\left(\begin{array}{rr} 2857 & 6 \\ 8571 & 19 \end{array}\right),\left(\begin{array}{rr} 4693 & 6 \\ 4695 & 19 \end{array}\right),\left(\begin{array}{rr} 7039 & 6 \\ 2349 & 19 \end{array}\right),\left(\begin{array}{rr} 6650 & 2739 \\ 1183 & 4699 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[9384])K:=\Q(E[9384]) is a degree-9644024424038496440244240384 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/9384Z)\GL_2(\Z/9384\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 6647=17223 6647 = 17^{2} \cdot 23
33 nonsplit multiplicative 44 6647=17223 6647 = 17^{2} \cdot 23
1111 split multiplicative 1212 39882=2317223 39882 = 2 \cdot 3 \cdot 17^{2} \cdot 23
1717 additive 6666 1518=231123 1518 = 2 \cdot 3 \cdot 11 \cdot 23
2323 nonsplit multiplicative 2424 19074=2311172 19074 = 2 \cdot 3 \cdot 11 \cdot 17^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 438702b consists of 2 curves linked by isogenies of degree 3.

Twists

This elliptic curve is its own minimal quadratic twist.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.