Properties

Label 438702ba
Number of curves 11
Conductor 438702438702
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ba1")
 
E.isogeny_class()
 

Elliptic curves in class 438702ba

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
438702.ba1 438702ba1 [1,0,1,135114,19114340][1, 0, 1, -135114, -19114340] 11301253512121/881654411301253512121/8816544 212809939141536212809939141536 [][] 24192002419200 1.68051.6805 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 438702ba1 has rank 00.

Complex multiplication

The elliptic curves in class 438702ba do not have complex multiplication.

Modular form 438702.2.a.ba

sage: E.q_eigenform(10)
 
qq2+q3+q4q5q6q7q8+q9+q10+q11+q125q13+q14q15+q16q18+O(q20)q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + q^{11} + q^{12} - 5 q^{13} + q^{14} - q^{15} + q^{16} - q^{18} + O(q^{20}) Copy content Toggle raw display