Properties

Label 438702f1
Conductor 438702438702
Discriminant 8.532×1020-8.532\times 10^{20}
j-invariant 62998922300795359335345595428352 -\frac{629989223007953593}{35345595428352}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x25161401x4729230171y^2+xy=x^3+x^2-5161401x-4729230171 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z5161401xz24729230171z3y^2z+xyz=x^3+x^2z-5161401xz^2-4729230171z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x36689176371x220546625215986y^2=x^3-6689176371x-220546625215986 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -5161401, -4729230171])
 
gp: E = ellinit([1, 1, 0, -5161401, -4729230171])
 
magma: E := EllipticCurve([1, 1, 0, -5161401, -4729230171]);
 
oscar: E = elliptic_curve([1, 1, 0, -5161401, -4729230171])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(29558479/10201,68796240926/1030301)(29558479/10201, 68796240926/1030301)13.14676996100179116950574278713.146769961001791169505742787\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  438702 438702  = 2311172232 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  853156748497930956288-853156748497930956288 = 12933113171023-1 \cdot 2^{9} \cdot 3^{3} \cdot 11^{3} \cdot 17^{10} \cdot 23
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  62998922300795359335345595428352 -\frac{629989223007953593}{35345595428352}  = 12933113174231773311093-1 \cdot 2^{-9} \cdot 3^{-3} \cdot 11^{-3} \cdot 17^{-4} \cdot 23^{-1} \cdot 773^{3} \cdot 1109^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.77364536966133413701372268932.7736453696613341370137226893
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.35703869763322609688895538041.3570386976332260968889553804
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.92602636650589110.9260263665058911
Szpiro ratio: σm\sigma_{m} ≈ 4.4703039854774814.470303985477481

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 13.14676996100179116950574278713.146769961001791169505742787
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0499188984677596423605896629460.049918898467759642360589662946
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 11321 1\cdot1\cdot3\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.93763364917344483817799419493.9376336491734448381779941949
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.937633649L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.04991913.1467706123.937633649\displaystyle 3.937633649 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.049919 \cdot 13.146770 \cdot 6}{1^2} \approx 3.937633649

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 438702.2.a.f

qq2q3+q42q5+q6+3q7q8+q9+2q10+q11q123q133q14+2q15+q16q18+O(q20) q - q^{2} - q^{3} + q^{4} - 2 q^{5} + q^{6} + 3 q^{7} - q^{8} + q^{9} + 2 q^{10} + q^{11} - q^{12} - 3 q^{13} - 3 q^{14} + 2 q^{15} + q^{16} - q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 29859840
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I9I_{9} nonsplit multiplicative 1 1 9 9
33 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1111 33 I3I_{3} split multiplicative -1 1 3 3
1717 22 I4I_{4}^{*} additive 1 2 10 4
2323 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1519, 2, 0, 1], [4049, 2, 4049, 3], [1, 0, 2, 1], [1, 2, 0, 1], [3961, 2, 3961, 3], [6071, 2, 6070, 3], [3313, 2, 3313, 3], [3037, 2, 3037, 3], [1, 1, 6071, 0]]
 
GL(2,Integers(6072)).subgroup(gens)
 
Gens := [[1519, 2, 0, 1], [4049, 2, 4049, 3], [1, 0, 2, 1], [1, 2, 0, 1], [3961, 2, 3961, 3], [6071, 2, 6070, 3], [3313, 2, 3313, 3], [3037, 2, 3037, 3], [1, 1, 6071, 0]];
 
sub<GL(2,Integers(6072))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 6072=2331123 6072 = 2^{3} \cdot 3 \cdot 11 \cdot 23 , index 22, genus 00, and generators

(1519201),(4049240493),(1021),(1201),(3961239613),(6071260703),(3313233133),(3037230373),(1160710)\left(\begin{array}{rr} 1519 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4049 & 2 \\ 4049 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3961 & 2 \\ 3961 & 3 \end{array}\right),\left(\begin{array}{rr} 6071 & 2 \\ 6070 & 3 \end{array}\right),\left(\begin{array}{rr} 3313 & 2 \\ 3313 & 3 \end{array}\right),\left(\begin{array}{rr} 3037 & 2 \\ 3037 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 6071 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6072])K:=\Q(E[6072]) is a degree-130005231206400130005231206400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6072Z)\GL_2(\Z/6072\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 219351=31117223 219351 = 3 \cdot 11 \cdot 17^{2} \cdot 23
33 nonsplit multiplicative 44 6647=17223 6647 = 17^{2} \cdot 23
1111 split multiplicative 1212 39882=2317223 39882 = 2 \cdot 3 \cdot 17^{2} \cdot 23
1717 additive 162162 1518=231123 1518 = 2 \cdot 3 \cdot 11 \cdot 23
2323 split multiplicative 2424 19074=2311172 19074 = 2 \cdot 3 \cdot 11 \cdot 17^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 438702f consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 25806b1, its twist by 1717.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.