Properties

Label 438702i
Number of curves 11
Conductor 438702438702
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 438702i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
438702.i1 438702i1 [1,1,0,88826323,250486779209][1, 1, 0, -88826323, -250486779209] 11111108866303075129/254555310616932611111108866303075129/2545553106169326 1775716102182133885045476617757161021821338850454766 [][] 126904320126904320 3.55733.5573 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 438702i1 has rank 11.

Complex multiplication

The elliptic curves in class 438702i do not have complex multiplication.

Modular form 438702.2.a.i

sage: E.q_eigenform(10)
 
qq2q3+q4q5+q6+q7q8+q9+q10q11q12+6q13q14+q15+q16q18+4q19+O(q20)q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - q^{11} - q^{12} + 6 q^{13} - q^{14} + q^{15} + q^{16} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display