Properties

Label 438702k1
Conductor 438702438702
Discriminant 5.300×1025-5.300\times 10^{25}
j-invariant 268075361838605671446955826597632 \frac{268075361838605671}{446955826597632}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2+65997046x283004486700y^2+xy=x^3+x^2+65997046x-283004486700 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z+65997046xz2283004486700z3y^2z+xyz=x^3+x^2z+65997046xz^2-283004486700z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+85532170941x13205140314042690y^2=x^3+85532170941x-13205140314042690 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, 65997046, -283004486700])
 
gp: E = ellinit([1, 1, 0, 65997046, -283004486700])
 
magma: E := EllipticCurve([1, 1, 0, 65997046, -283004486700]);
 
oscar: E = elliptic_curve([1, 1, 0, 65997046, -283004486700])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(3588,1794)(3588, -1794)0022

Integral points

(3588,1794) \left(3588, -1794\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  438702 438702  = 2311172232 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  53003542364174531328655104-53003542364174531328655104 = 12834116179233-1 \cdot 2^{8} \cdot 3^{4} \cdot 11^{6} \cdot 17^{9} \cdot 23^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  268075361838605671446955826597632 \frac{268075361838605671}{446955826597632}  = 2834761162331315932^{-8} \cdot 3^{-4} \cdot 7^{6} \cdot 11^{-6} \cdot 23^{-3} \cdot 13159^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.62106929961519808223490709703.6210692996151980822349070970
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.49615929157303602204775613361.4961592915730360220477561336
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01565181572072021.0156518157207202
Szpiro ratio: σm\sigma_{m} ≈ 5.10028951413495255.1002895141349525

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0331967657781527309092196290200.033196765778152730909219629020
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 48 48  = 22223 2\cdot2\cdot2\cdot2\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.398361189337832770910635548240.39836118933783277091063554824
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.398361189L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0331971.00000048220.398361189\displaystyle 0.398361189 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.033197 \cdot 1.000000 \cdot 48}{2^2} \approx 0.398361189

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 438702.2.a.k

qq2q3+q4+2q5+q64q7q8+q92q10q11q126q13+4q142q15+q16q18+O(q20) q - q^{2} - q^{3} + q^{4} + 2 q^{5} + q^{6} - 4 q^{7} - q^{8} + q^{9} - 2 q^{10} - q^{11} - q^{12} - 6 q^{13} + 4 q^{14} - 2 q^{15} + q^{16} - q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 169205760
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 2 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that this curve is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I8I_{8} nonsplit multiplicative 1 1 8 8
33 22 I4I_{4} nonsplit multiplicative 1 1 4 4
1111 22 I6I_{6} nonsplit multiplicative 1 1 6 6
1717 22 IIIIII^{*} additive 1 2 9 0
2323 33 I3I_{3} split multiplicative -1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 2, 2, 5], [1, 4, 0, 1], [16196, 1, 13155, 0], [11970, 1, 11219, 0], [1, 0, 4, 1], [17201, 4, 17200, 5], [3, 4, 8, 11], [9385, 4, 1566, 9], [4305, 12904, 4300, 12903]]
 
GL(2,Integers(17204)).subgroup(gens)
 
Gens := [[1, 2, 2, 5], [1, 4, 0, 1], [16196, 1, 13155, 0], [11970, 1, 11219, 0], [1, 0, 4, 1], [17201, 4, 17200, 5], [3, 4, 8, 11], [9385, 4, 1566, 9], [4305, 12904, 4300, 12903]];
 
sub<GL(2,Integers(17204))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 17204=22111723 17204 = 2^{2} \cdot 11 \cdot 17 \cdot 23 , index 1212, genus 00, and generators

(1225),(1401),(161961131550),(119701112190),(1041),(172014172005),(34811),(9385415669),(430512904430012903)\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 16196 & 1 \\ 13155 & 0 \end{array}\right),\left(\begin{array}{rr} 11970 & 1 \\ 11219 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 17201 & 4 \\ 17200 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 9385 & 4 \\ 1566 & 9 \end{array}\right),\left(\begin{array}{rr} 4305 & 12904 \\ 4300 & 12903 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[17204])K:=\Q(E[17204]) is a degree-22100889305088002210088930508800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/17204Z)\GL_2(\Z/17204\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 391=1723 391 = 17 \cdot 23
33 nonsplit multiplicative 44 578=2172 578 = 2 \cdot 17^{2}
1111 nonsplit multiplicative 1212 39882=2317223 39882 = 2 \cdot 3 \cdot 17^{2} \cdot 23
1717 additive 9898 1518=231123 1518 = 2 \cdot 3 \cdot 11 \cdot 23
2323 split multiplicative 2424 19074=2311172 19074 = 2 \cdot 3 \cdot 11 \cdot 17^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 438702k consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 438702z1, its twist by 1717.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.