Properties

Label 438702x1
Conductor 438702438702
Discriminant 1.201×1015-1.201\times 10^{15}
j-invariant 3715939375349741824 -\frac{37159393753}{49741824}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x320092x1996870y^2+xy+y=x^3-20092x-1996870 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x320092xz21996870z3y^2z+xyz+yz^2=x^3-20092xz^2-1996870z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x326038611x93087839250y^2=x^3-26038611x-93087839250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -20092, -1996870])
 
gp: E = ellinit([1, 0, 1, -20092, -1996870])
 
magma: E := EllipticCurve([1, 0, 1, -20092, -1996870]);
 
oscar: E = elliptic_curve([1, 0, 1, -20092, -1996870])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(177,89)(177, -89)0022

Integral points

(177,89) \left(177, -89\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  438702 438702  = 2311172232 \cdot 3 \cdot 11 \cdot 17^{2} \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1200646708985856-1200646708985856 = 121631117623-1 \cdot 2^{16} \cdot 3 \cdot 11 \cdot 17^{6} \cdot 23
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  3715939375349741824 -\frac{37159393753}{49741824}  = 121631111231473713-1 \cdot 2^{-16} \cdot 3^{-1} \cdot 11^{-1} \cdot 23^{-1} \cdot 47^{3} \cdot 71^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.58620391872066383942079880311.5862039187206638394207988031
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.169597246692555799296031494160.16959724669255579929603149416
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.02197456352252411.0219745635225241
Szpiro ratio: σm\sigma_{m} ≈ 3.27409483271872273.2740948327187227

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.191048810821507176136511262700.19104881082150717613651126270
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 21121 2\cdot1\cdot1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.764195243286028704546045050810.76419524328602870454604505081
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  44 = 222^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.764195243L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor240.1910491.0000004220.764195243\displaystyle 0.764195243 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.191049 \cdot 1.000000 \cdot 4}{2^2} \approx 0.764195243

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 438702.2.a.x

qq2+q3+q42q5q6q8+q9+2q10q11+q122q132q15+q16q184q19+O(q20) q - q^{2} + q^{3} + q^{4} - 2 q^{5} - q^{6} - q^{8} + q^{9} + 2 q^{10} - q^{11} + q^{12} - 2 q^{13} - 2 q^{15} + q^{16} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1769472
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 3 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that this curve is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I16I_{16} nonsplit multiplicative 1 1 16 16
33 11 I1I_{1} split multiplicative -1 1 1 1
1111 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1717 22 I0I_0^{*} additive 1 2 6 0
2323 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[52276, 66793, 91103, 24294], [103217, 8, 103216, 9], [32641, 32640, 29614, 20503], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [31468, 66793, 100487, 24294], [30359, 0, 0, 103223], [6835, 6834, 81226, 72115], [20248, 97155, 93109, 66794], [7, 6, 103218, 103219]]
 
GL(2,Integers(103224)).subgroup(gens)
 
Gens := [[52276, 66793, 91103, 24294], [103217, 8, 103216, 9], [32641, 32640, 29614, 20503], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [31468, 66793, 100487, 24294], [30359, 0, 0, 103223], [6835, 6834, 81226, 72115], [20248, 97155, 93109, 66794], [7, 6, 103218, 103219]];
 
sub<GL(2,Integers(103224))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 103224=233111723 103224 = 2^{3} \cdot 3 \cdot 11 \cdot 17 \cdot 23 , index 4848, genus 00, and generators

(52276667939110324294),(10321781032169),(32641326402961420503),(1081),(1801),(14417),(314686679310048724294),(3035900103223),(683568348122672115),(20248971559310966794),(76103218103219)\left(\begin{array}{rr} 52276 & 66793 \\ 91103 & 24294 \end{array}\right),\left(\begin{array}{rr} 103217 & 8 \\ 103216 & 9 \end{array}\right),\left(\begin{array}{rr} 32641 & 32640 \\ 29614 & 20503 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 31468 & 66793 \\ 100487 & 24294 \end{array}\right),\left(\begin{array}{rr} 30359 & 0 \\ 0 & 103223 \end{array}\right),\left(\begin{array}{rr} 6835 & 6834 \\ 81226 & 72115 \end{array}\right),\left(\begin{array}{rr} 20248 & 97155 \\ 93109 & 66794 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 103218 & 103219 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[103224])K:=\Q(E[103224]) is a degree-424337074657689600424337074657689600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/103224Z)\GL_2(\Z/103224\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 219351=31117223 219351 = 3 \cdot 11 \cdot 17^{2} \cdot 23
33 split multiplicative 44 146234=21117223 146234 = 2 \cdot 11 \cdot 17^{2} \cdot 23
1111 nonsplit multiplicative 1212 39882=2317223 39882 = 2 \cdot 3 \cdot 17^{2} \cdot 23
1717 additive 146146 1518=231123 1518 = 2 \cdot 3 \cdot 11 \cdot 23
2323 nonsplit multiplicative 2424 19074=2311172 19074 = 2 \cdot 3 \cdot 11 \cdot 17^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 438702x consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 1518f1, its twist by 1717.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.