Properties

Label 4400.x
Number of curves 22
Conductor 44004400
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 4400.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4400.x1 4400j2 [0,1,0,5708,104912][0, -1, 0, -5708, 104912] 41141648/1464141141648/14641 73205000000007320500000000 [2][2] 76807680 1.16951.1695  
4400.x2 4400j1 [0,1,0,5083,141162][0, -1, 0, -5083, 141162] 464857088/121464857088/121 37812500003781250000 [2][2] 38403840 0.822910.82291 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4400.x have rank 11.

Complex multiplication

The elliptic curves in class 4400.x do not have complex multiplication.

Modular form 4400.2.a.x

sage: E.q_eigenform(10)
 
q+2q32q7+q9+q114q174q19+O(q20)q + 2 q^{3} - 2 q^{7} + q^{9} + q^{11} - 4 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.