E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 4400c
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
4400.r3 |
4400c1 |
[0,0,0,−126050,−17225125] |
885956203616256/15125 |
3781250000 |
[2] |
13824 |
1.3797
|
Γ0(N)-optimal |
4400.r2 |
4400c2 |
[0,0,0,−126175,−17189250] |
55537159171536/228765625 |
915062500000000 |
[2,2] |
27648 |
1.7263
|
|
4400.r1 |
4400c3 |
[0,0,0,−188675,1623250] |
46424454082884/26794860125 |
428717762000000000 |
[4] |
55296 |
2.0728
|
|
4400.r4 |
4400c4 |
[0,0,0,−65675,−33705750] |
−1957960715364/29541015625 |
−472656250000000000 |
[2] |
55296 |
2.0728
|
|
The elliptic curves in class 4400c have
rank 0.
The elliptic curves in class 4400c do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.