Properties

Label 4400c
Number of curves 44
Conductor 44004400
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 4400c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4400.r3 4400c1 [0,0,0,126050,17225125][0, 0, 0, -126050, -17225125] 885956203616256/15125885956203616256/15125 37812500003781250000 [2][2] 1382413824 1.37971.3797 Γ0(N)\Gamma_0(N)-optimal
4400.r2 4400c2 [0,0,0,126175,17189250][0, 0, 0, -126175, -17189250] 55537159171536/22876562555537159171536/228765625 915062500000000915062500000000 [2,2][2, 2] 2764827648 1.72631.7263  
4400.r1 4400c3 [0,0,0,188675,1623250][0, 0, 0, -188675, 1623250] 46424454082884/2679486012546424454082884/26794860125 428717762000000000428717762000000000 [4][4] 5529655296 2.07282.0728  
4400.r4 4400c4 [0,0,0,65675,33705750][0, 0, 0, -65675, -33705750] 1957960715364/29541015625-1957960715364/29541015625 472656250000000000-472656250000000000 [2][2] 5529655296 2.07282.0728  

Rank

sage: E.rank()
 

The elliptic curves in class 4400c have rank 00.

Complex multiplication

The elliptic curves in class 4400c do not have complex multiplication.

Modular form 4400.2.a.c

sage: E.q_eigenform(10)
 
q+4q73q9+q116q13+6q174q19+O(q20)q + 4 q^{7} - 3 q^{9} + q^{11} - 6 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.