Properties

Label 4400c3
Conductor 44004400
Discriminant 4.287×10174.287\times 10^{17}
j-invariant 4642445408288426794860125 \frac{46424454082884}{26794860125}
CM no
Rank 00
Torsion structure Z/4Z\Z/{4}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3188675x+1623250y^2=x^3-188675x+1623250 Copy content Toggle raw display (homogenize, simplify)
y2z=x3188675xz2+1623250z3y^2z=x^3-188675xz^2+1623250z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3188675x+1623250y^2=x^3-188675x+1623250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -188675, 1623250])
 
gp: E = ellinit([0, 0, 0, -188675, 1623250])
 
magma: E := EllipticCurve([0, 0, 0, -188675, 1623250]);
 
oscar: E = elliptic_curve([0, 0, 0, -188675, 1623250])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/4Z\Z/{4}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1035,30250)(1035, 30250)0044

Integral points

(430,0) \left(430, 0\right) , (1035,±30250)(1035,\pm 30250) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  4400 4400  = 2452112^{4} \cdot 5^{2} \cdot 11
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  428717762000000000428717762000000000 = 210591182^{10} \cdot 5^{9} \cdot 11^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  4642445408288426794860125 \frac{46424454082884}{26794860125}  = 223353118754732^{2} \cdot 3^{3} \cdot 5^{-3} \cdot 11^{-8} \cdot 7547^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.07282492038190805859009893412.0728249203819080585900989341
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.690483313698236780108692499600.69048331369823678010869249960
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.13954613766102761.1395461376610276
Szpiro ratio: σm\sigma_{m} ≈ 5.7283210847808555.728321084780855

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.253375047209491030705132026390.25337504720949103070513202639
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 128 128  = 222223 2^{2}\cdot2^{2}\cdot2^{3}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.02700037767592824564105621112.0270003776759282456410562111
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.027000378L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2533751.000000128422.027000378\displaystyle 2.027000378 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.253375 \cdot 1.000000 \cdot 128}{4^2} \approx 2.027000378

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   4400.2.a.r

q+4q73q9+q116q13+6q174q19+O(q20) q + 4 q^{7} - 3 q^{9} + q^{11} - 6 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 55296
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I2I_{2}^{*} additive 1 4 10 0
55 44 I3I_{3}^{*} additive 1 2 9 3
1111 88 I8I_{8} split multiplicative -1 1 8 8

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.24.0.52

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[162, 877, 259, 860], [219, 654, 760, 269], [321, 16, 808, 129], [447, 450, 362, 423], [1, 16, 0, 1], [1, 8, 8, 65], [1, 0, 16, 1], [15, 166, 594, 355], [865, 16, 864, 17]]
 
GL(2,Integers(880)).subgroup(gens)
 
Gens := [[162, 877, 259, 860], [219, 654, 760, 269], [321, 16, 808, 129], [447, 450, 362, 423], [1, 16, 0, 1], [1, 8, 8, 65], [1, 0, 16, 1], [15, 166, 594, 355], [865, 16, 864, 17]];
 
sub<GL(2,Integers(880))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 880=24511 880 = 2^{4} \cdot 5 \cdot 11 , index 192192, genus 33, and generators

(162877259860),(219654760269),(32116808129),(447450362423),(11601),(18865),(10161),(15166594355),(8651686417)\left(\begin{array}{rr} 162 & 877 \\ 259 & 860 \end{array}\right),\left(\begin{array}{rr} 219 & 654 \\ 760 & 269 \end{array}\right),\left(\begin{array}{rr} 321 & 16 \\ 808 & 129 \end{array}\right),\left(\begin{array}{rr} 447 & 450 \\ 362 & 423 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 166 \\ 594 & 355 \end{array}\right),\left(\begin{array}{rr} 865 & 16 \\ 864 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[880])K:=\Q(E[880]) is a degree-811008000811008000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/880Z)\GL_2(\Z/880\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 25=52 25 = 5^{2}
55 additive 1818 176=2411 176 = 2^{4} \cdot 11
1111 split multiplicative 1212 400=2452 400 = 2^{4} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 4400c consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 440c3, its twist by 20-20.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/4Z\cong \Z/{4}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5)\Q(\sqrt{5}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 4.4.8000.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.1024000000.6 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.0.2560000.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.81970859520000.7 Z/12Z\Z/12\Z not in database
1616 16.0.16777216000000000000.1 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 5 11
Reduction type add add split
λ\lambda-invariant(s) - - 1
μ\mu-invariant(s) - - 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.