sage: E = EllipticCurve("bq1")
E.isogeny_class()
Elliptic curves in class 442225bq
sage: E.isogeny_class().curves
LMFDB label
Cremona label
Weierstrass coefficients
j-invariant
Discriminant
Torsion structure
Modular degree
Faltings height
Optimality
CM discriminant
442225.bq2
442225bq1
[ 0 , 0 , 1 , − 46550 , − 3869469 ] [0, 0, 1, -46550, -3869469] [ 0 , 0 , 1 , − 4 6 5 5 0 , − 3 8 6 9 4 6 9 ]
− 884736 -884736 − 8 8 4 7 3 6
− 12608663921875 -12608663921875 − 1 2 6 0 8 6 6 3 9 2 1 8 7 5
[ ] [] [ ]
924000 924000 9 2 4 0 0 0
1.4275 1.4275 1 . 4 2 7 5
Γ 0 ( N ) \Gamma_0(N) Γ 0 ( N ) -optimal*
− 19 -19 − 1 9
442225.bq1
442225bq2
[ 0 , 0 , 1 , − 16804550 , 26540686156 ] [0, 0, 1, -16804550, 26540686156] [ 0 , 0 , 1 , − 1 6 8 0 4 5 5 0 , 2 6 5 4 0 6 8 6 1 5 6 ]
− 884736 -884736 − 8 8 4 7 3 6
− 593185702437524546875 -593185702437524546875 − 5 9 3 1 8 5 7 0 2 4 3 7 5 2 4 5 4 6 8 7 5
[ ] [] [ ]
17556000 17556000 1 7 5 5 6 0 0 0
2.8997 2.8997 2 . 8 9 9 7
Γ 0 ( N ) \Gamma_0(N) Γ 0 ( N ) -optimal*
− 19 -19 − 1 9
* optimality has not been
determined rigorously for conductors over 400000. In
this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally
curve 442225bq1.
sage: E.rank()
The elliptic curves in class 442225bq have
rank 0 0 0 .
Each elliptic curve in class 442225bq has complex multiplication by an order in the imaginary quadratic field
Q ( − 19 ) \Q(\sqrt{-19}) Q ( − 1 9 ) .
sage: E.q_eigenform(10)
sage: E.isogeny_class().matrix()
The i , j i,j i , j entry is the smallest degree of a cyclic isogeny between the i i i -th and j j j -th curve in the isogeny class, in the Cremona numbering.
( 1 19 19 1 ) \left(\begin{array}{rr}
1 & 19 \\
19 & 1
\end{array}\right) ( 1 1 9 1 9 1 )
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.