Properties

Label 442225bq
Number of curves $2$
Conductor $442225$
CM \(\Q(\sqrt{-19}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bq1")
 
E.isogeny_class()
 

Elliptic curves in class 442225bq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
442225.bq2 442225bq1 \([0, 0, 1, -46550, -3869469]\) \(-884736\) \(-12608663921875\) \([]\) \(924000\) \(1.4275\) \(\Gamma_0(N)\)-optimal* \(-19\)
442225.bq1 442225bq2 \([0, 0, 1, -16804550, 26540686156]\) \(-884736\) \(-593185702437524546875\) \([]\) \(17556000\) \(2.8997\) \(\Gamma_0(N)\)-optimal* \(-19\)
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 442225bq1.

Rank

sage: E.rank()
 

The elliptic curves in class 442225bq have rank \(0\).

Complex multiplication

Each elliptic curve in class 442225bq has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).

Modular form 442225.2.a.bq

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} - 3 q^{9} - 5 q^{11} + 4 q^{16} - 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.