Show commands:
SageMath
E = EllipticCurve("bq1")
E.isogeny_class()
Elliptic curves in class 442225bq
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
442225.bq2 | 442225bq1 | \([0, 0, 1, -46550, -3869469]\) | \(-884736\) | \(-12608663921875\) | \([]\) | \(924000\) | \(1.4275\) | \(\Gamma_0(N)\)-optimal* | \(-19\) |
442225.bq1 | 442225bq2 | \([0, 0, 1, -16804550, 26540686156]\) | \(-884736\) | \(-593185702437524546875\) | \([]\) | \(17556000\) | \(2.8997\) | \(\Gamma_0(N)\)-optimal* | \(-19\) |
Rank
sage: E.rank()
The elliptic curves in class 442225bq have rank \(0\).
Complex multiplication
Each elliptic curve in class 442225bq has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).Modular form 442225.2.a.bq
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.