Properties

Label 445280.a1
Conductor 445280445280
Discriminant 693468385280-693468385280
j-invariant 933863041399205 -\frac{93386304}{1399205}
CM no
Rank 22
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3748x40832y^2=x^3-748x-40832 Copy content Toggle raw display (homogenize, simplify)
y2z=x3748xz240832z3y^2z=x^3-748xz^2-40832z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3748x40832y^2=x^3-748x-40832 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 0, 0, -748, -40832])
 
Copy content gp:E = ellinit([0, 0, 0, -748, -40832])
 
Copy content magma:E := EllipticCurve([0, 0, 0, -748, -40832]);
 
Copy content oscar:E = elliptic_curve([0, 0, 0, -748, -40832])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ\Z \oplus \Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(48,184)(48, 184)1.24383482223815175388599826121.2438348222381517538859982612\infty
(416,8464)(416, 8464)2.25638343651575330786587348232.2563834365157533078658734823\infty

Integral points

(48,±184)(48,\pm 184), (416,±8464)(416,\pm 8464), (1632,±65920)(1632,\pm 65920) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  445280 445280  = 255112232^{5} \cdot 5 \cdot 11^{2} \cdot 23
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  693468385280-693468385280 = 12125112234-1 \cdot 2^{12} \cdot 5 \cdot 11^{2} \cdot 23^{4}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  933863041399205 -\frac{93386304}{1399205}  = 126335111173234-1 \cdot 2^{6} \cdot 3^{3} \cdot 5^{-1} \cdot 11 \cdot 17^{3} \cdot 23^{-4}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.953489611370773340404822937670.95348961137077334040482293767
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.13930678132223372635606644678-0.13930678132223372635606644678
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93751050985610780.9375105098561078
Szpiro ratio: σm\sigma_{m} ≈ 2.67233298486974842.6723329848697484

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.79010006040276141674362179212.7901000604027614167436217921
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.387962712411902279271187524750.38796271241190227927118752475
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 21122 2\cdot1\cdot1\cdot2^{2}
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 8.65963829867574164642714507038.6596382986757416464271450703
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

8.659638299L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3879632.7901008128.659638299\begin{aligned} 8.659638299 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.387963 \cdot 2.790100 \cdot 8}{1^2} \\ & \approx 8.659638299\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 0, 0, -748, -40832]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 0, 0, -748, -40832]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 445280.2.a.a

q3q3q53q7+6q9+6q13+3q15+2q19+O(q20) q - 3 q^{3} - q^{5} - 3 q^{7} + 6 q^{9} + 6 q^{13} + 3 q^{15} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1277952
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I3I_{3}^{*} additive -1 5 12 0
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1111 11 IIII additive -1 2 2 0
2323 44 I4I_{4} split multiplicative -1 1 4 4

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1, 2, 0, 1], [1, 1, 19, 0], [17, 2, 17, 3], [1, 0, 2, 1], [11, 2, 11, 3], [19, 2, 18, 3]] GL(2,Integers(20)).subgroup(gens)
 
Copy content magma:Gens := [[1, 2, 0, 1], [1, 1, 19, 0], [17, 2, 17, 3], [1, 0, 2, 1], [11, 2, 11, 3], [19, 2, 18, 3]]; sub<GL(2,Integers(20))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 20.2.0.a.1, level 20=225 20 = 2^{2} \cdot 5 , index 22, genus 00, and generators

(1201),(11190),(172173),(1021),(112113),(192183)\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 19 & 0 \end{array}\right),\left(\begin{array}{rr} 17 & 2 \\ 17 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 11 & 3 \end{array}\right),\left(\begin{array}{rr} 19 & 2 \\ 18 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[20])K:=\Q(E[20]) is a degree-2304023040 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/20Z)\GL_2(\Z/20\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 605=5112 605 = 5 \cdot 11^{2}
55 nonsplit multiplicative 66 89056=2511223 89056 = 2^{5} \cdot 11^{2} \cdot 23
1111 additive 3232 3680=25523 3680 = 2^{5} \cdot 5 \cdot 23
2323 split multiplicative 2424 19360=255112 19360 = 2^{5} \cdot 5 \cdot 11^{2}

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 445280.a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.