Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-54224496x-158597991796\) | (homogenize, simplify) |
\(y^2z=x^3+x^2z-54224496xz^2-158597991796z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-4392184203x-115604759466702\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(\frac{10993931354755615}{147576600649}, \frac{1146875380476883166304866}{56692584175517893}\right)\) |
$\hat{h}(P)$ | ≈ | $31.043460811472099393887393299$ |
Integral points
None
Invariants
Conductor: | \( 445280 \) | = | $2^{5} \cdot 5 \cdot 11^{2} \cdot 23$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-659850439797131000000000 $ | = | $-1 \cdot 2^{9} \cdot 5^{9} \cdot 11^{9} \cdot 23^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{14605154817835672}{546564453125} \) | = | $-1 \cdot 2^{3} \cdot 5^{-9} \cdot 23^{-4} \cdot 122219^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $3.3410219807656438194339381623\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $1.0227401407469069293245563877\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9501355207106714\dots$ | |||
Szpiro ratio: | $5.005374381945155\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $31.043460811472099393887393299\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.027756700499517717143698585006\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 8 $ = $ 1\cdot1\cdot2\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 6.8933123537003703842618088026 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 6.893312354 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.027757 \cdot 31.043461 \cdot 8}{1^2} \approx 6.893312354$
Modular invariants
Modular form 445280.2.a.bf
For more coefficients, see the Downloads section to the right.
Modular degree: | 52005888 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_0^{*}$ | additive | -1 | 5 | 9 | 0 |
$5$ | $1$ | $I_{9}$ | nonsplit multiplicative | 1 | 1 | 9 | 9 |
$11$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$23$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 440 = 2^{3} \cdot 5 \cdot 11 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 439 & 2 \\ 438 & 3 \end{array}\right),\left(\begin{array}{rr} 221 & 2 \\ 221 & 3 \end{array}\right),\left(\begin{array}{rr} 321 & 2 \\ 321 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 439 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 111 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 177 & 2 \\ 177 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[440])$ is a degree-$4866048000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 55 = 5 \cdot 11 \) |
$3$ | good | $2$ | \( 89056 = 2^{5} \cdot 11^{2} \cdot 23 \) |
$5$ | nonsplit multiplicative | $6$ | \( 89056 = 2^{5} \cdot 11^{2} \cdot 23 \) |
$11$ | additive | $42$ | \( 3680 = 2^{5} \cdot 5 \cdot 23 \) |
$23$ | split multiplicative | $24$ | \( 19360 = 2^{5} \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 445280.bf consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 445280.n1, its twist by $44$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.