Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 445280.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
445280.o1 | 445280o4 | \([0, 0, 0, -371228, -87058048]\) | \(779704121664/575\) | \(4172380467200\) | \([2]\) | \(1802240\) | \(1.7321\) | |
445280.o2 | 445280o2 | \([0, 0, 0, -53603, 2851002]\) | \(18778674312/6996025\) | \(6345669143052800\) | \([2]\) | \(1802240\) | \(1.7321\) | \(\Gamma_0(N)\)-optimal* |
445280.o3 | 445280o1 | \([0, 0, 0, -23353, -1341648]\) | \(12422690496/330625\) | \(37486230760000\) | \([2, 2]\) | \(901120\) | \(1.3855\) | \(\Gamma_0(N)\)-optimal* |
445280.o4 | 445280o3 | \([0, 0, 0, 4477, -4341722]\) | \(10941048/8984375\) | \(-8149180600000000\) | \([2]\) | \(1802240\) | \(1.7321\) |
Rank
sage: E.rank()
The elliptic curves in class 445280.o have rank \(0\).
Complex multiplication
The elliptic curves in class 445280.o do not have complex multiplication.Modular form 445280.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.