Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-13059772x+18176860064\) | (homogenize, simplify) |
\(y^2z=x^3-13059772xz^2+18176860064z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-13059772x+18176860064\) | (homogenize, minimize) |
Mordell-Weil group structure
trivial
Integral points
None
Invariants
Conductor: | \( 445280 \) | = | $2^{5} \cdot 5 \cdot 11^{2} \cdot 23$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-175627489458291200000 $ | = | $-1 \cdot 2^{12} \cdot 5^{5} \cdot 11^{10} \cdot 23^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{2318695384896}{1653125} \) | = | $-1 \cdot 2^{6} \cdot 3^{3} \cdot 5^{-5} \cdot 11^{2} \cdot 23^{-2} \cdot 223^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $2.8201542952347509600406208671\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.12876105400949686390510243067\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9337438013959558\dots$ | |||
Szpiro ratio: | $4.67229227487402\dots$ |
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.17889903909748980101086493267\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 40 $ = $ 2^{2}\cdot5\cdot1\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 7.1559615638995920404345973066 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 7.155961564 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.178899 \cdot 1.000000 \cdot 40}{1^2} \approx 7.155961564$
Modular invariants
Modular form 445280.2.a.bn
For more coefficients, see the Downloads section to the right.
Modular degree: | 52715520 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{3}^{*}$ | additive | -1 | 5 | 12 | 0 |
$5$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$11$ | $1$ | $II^{*}$ | additive | -1 | 2 | 10 | 0 |
$23$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 20.2.0.a.1, level \( 20 = 2^{2} \cdot 5 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 19 & 0 \end{array}\right),\left(\begin{array}{rr} 17 & 2 \\ 17 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 11 & 3 \end{array}\right),\left(\begin{array}{rr} 19 & 2 \\ 18 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[20])$ is a degree-$23040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/20\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 605 = 5 \cdot 11^{2} \) |
$5$ | split multiplicative | $6$ | \( 89056 = 2^{5} \cdot 11^{2} \cdot 23 \) |
$11$ | additive | $32$ | \( 3680 = 2^{5} \cdot 5 \cdot 23 \) |
$23$ | nonsplit multiplicative | $24$ | \( 19360 = 2^{5} \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 445280bn consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 445280c1, its twist by $44$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.