Properties

Label 446400.hb
Number of curves $2$
Conductor $446400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("hb1")
 
E.isogeny_class()
 

Elliptic curves in class 446400.hb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
446400.hb1 446400hb1 \([0, 0, 0, -1140300, -550342000]\) \(-1482713947827/325058560\) \(-35948876267520000000\) \([]\) \(9289728\) \(2.4731\) \(\Gamma_0(N)\)-optimal*
446400.hb2 446400hb2 \([0, 0, 0, 8075700, 3306042000]\) \(722458663317/476656000\) \(-38428754116608000000000\) \([]\) \(27869184\) \(3.0224\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 446400.hb1.

Rank

sage: E.rank()
 

The elliptic curves in class 446400.hb have rank \(0\).

Complex multiplication

The elliptic curves in class 446400.hb do not have complex multiplication.

Modular form 446400.2.a.hb

sage: E.q_eigenform(10)
 
\(q - q^{7} + 3 q^{11} - 4 q^{13} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.