Show commands:
SageMath
E = EllipticCurve("mp1")
E.isogeny_class()
Elliptic curves in class 446400.mp
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
446400.mp1 | 446400mp1 | \([0, 0, 0, -1140300, 550342000]\) | \(-1482713947827/325058560\) | \(-35948876267520000000\) | \([]\) | \(9289728\) | \(2.4731\) | \(\Gamma_0(N)\)-optimal |
446400.mp2 | 446400mp2 | \([0, 0, 0, 8075700, -3306042000]\) | \(722458663317/476656000\) | \(-38428754116608000000000\) | \([]\) | \(27869184\) | \(3.0224\) |
Rank
sage: E.rank()
The elliptic curves in class 446400.mp have rank \(0\).
Complex multiplication
The elliptic curves in class 446400.mp do not have complex multiplication.Modular form 446400.2.a.mp
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.