y2=x3+8075700x−3306042000
|
(homogenize, simplify) |
y2z=x3+8075700xz2−3306042000z3
|
(dehomogenize, simplify) |
y2=x3+8075700x−3306042000
|
(homogenize, minimize) |
sage: E = EllipticCurve([0, 0, 0, 8075700, -3306042000])
gp: E = ellinit([0, 0, 0, 8075700, -3306042000])
magma: E := EllipticCurve([0, 0, 0, 8075700, -3306042000]);
oscar: E = elliptic_curve([0, 0, 0, 8075700, -3306042000])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
trivial
magma: MordellWeilGroup(E);
Invariants
Conductor: |
N |
= |
446400 | = | 26⋅32⋅52⋅31 |
sage: E.conductor().factor()
|
Discriminant: |
Δ |
= |
−38428754116608000000000 | = | −1⋅225⋅39⋅59⋅313 |
sage: E.discriminant().factor()
|
j-invariant: |
j |
= |
476656000722458663317 | = | 2−7⋅36⋅5−3⋅31−3⋅9973 |
sage: E.j_invariant().factor()
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
magma: HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 3.0223955513534912242913044759 |
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 0.35399660779544080431864269941 |
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 0.9749204621313927 |
|
Szpiro ratio: |
σm | ≈ | 4.560446385659912 |
|
Analytic rank: |
ran | = | 0
|
|
Mordell-Weil rank: |
r | = | 0
|
gp: [lower,upper] = ellrank(E)
|
Regulator: |
Reg(E/Q) | = | 1 |
G = E.gen \\ if available matdet(ellheightmatrix(E,G))
|
Real period: |
Ω | ≈ | 0.065652128928511338611683519497 |
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 48
= 2⋅2⋅22⋅3
|
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 1 |
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: |
L(E,1) | ≈ | 3.1513021885685442533608089358 |
r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
= |
1
(exact)
|
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
3.151302189≈L(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈121⋅0.065652⋅1.000000⋅48≈3.151302189
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
446400.2.a.mp
q+q7−3q11−4q13+6q17+q19+O(q20)
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction:
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[4, 3, 9, 7], [1801, 6, 1683, 19], [2634, 1079, 2477, 3546], [3715, 6, 3714, 7], [743, 3714, 2229, 3701], [2791, 6, 933, 19], [1859, 3714, 1857, 3701], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]]
GL(2,Integers(3720)).subgroup(gens)
Gens := [[4, 3, 9, 7], [1801, 6, 1683, 19], [2634, 1079, 2477, 3546], [3715, 6, 3714, 7], [743, 3714, 2229, 3701], [2791, 6, 933, 19], [1859, 3714, 1857, 3701], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]];
sub<GL(2,Integers(3720))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 3720=23⋅3⋅5⋅31, index 16, genus 0, and generators
(4937),(18011683619),(2634247710793546),(3715371467),(743222937143701),(2791933619),(1859185737143701),(1061),(38411),(1601).
The torsion field K:=Q(E[3720]) is a degree-1974730752000 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/3720Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
additive |
4 |
2325=3⋅52⋅31 |
3 |
additive |
2 |
1600=26⋅52 |
5 |
additive |
18 |
17856=26⋅32⋅31 |
31 |
split multiplicative |
32 |
14400=26⋅32⋅52 |
This curve has non-trivial cyclic isogenies of degree d for d=
3.
Its isogeny class 446400mp
consists of 2 curves linked by isogenies of
degree 3.
The minimal quadratic twist of this elliptic curve is
2790f1, its twist by −120.
No Iwasawa invariant data is available for this curve.
p-adic regulators
All p-adic regulators are identically 1 since the rank is 0.