Properties

Label 446400mp2
Conductor 446400446400
Discriminant 3.843×1022-3.843\times 10^{22}
j-invariant 722458663317476656000 \frac{722458663317}{476656000}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+8075700x3306042000y^2=x^3+8075700x-3306042000 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+8075700xz23306042000z3y^2z=x^3+8075700xz^2-3306042000z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+8075700x3306042000y^2=x^3+8075700x-3306042000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, 8075700, -3306042000])
 
gp: E = ellinit([0, 0, 0, 8075700, -3306042000])
 
magma: E := EllipticCurve([0, 0, 0, 8075700, -3306042000]);
 
oscar: E = elliptic_curve([0, 0, 0, 8075700, -3306042000])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  446400 446400  = 263252312^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  38428754116608000000000-38428754116608000000000 = 12253959313-1 \cdot 2^{25} \cdot 3^{9} \cdot 5^{9} \cdot 31^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  722458663317476656000 \frac{722458663317}{476656000}  = 27365331399732^{-7} \cdot 3^{6} \cdot 5^{-3} \cdot 31^{-3} \cdot 997^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.02239555135349122429130447593.0223955513534912242913044759
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.353996607795440804318642699410.35399660779544080431864269941
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.97492046213139270.9749204621313927
Szpiro ratio: σm\sigma_{m} ≈ 4.5604463856599124.560446385659912

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0656521289285113386116835194970.065652128928511338611683519497
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 48 48  = 22223 2\cdot2\cdot2^{2}\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 3.15130218856854425336080893583.1513021885685442533608089358
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.151302189L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0656521.00000048123.151302189\displaystyle 3.151302189 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.065652 \cdot 1.000000 \cdot 48}{1^2} \approx 3.151302189

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 446400.2.a.mp

q+q73q114q13+6q17+q19+O(q20) q + q^{7} - 3 q^{11} - 4 q^{13} + 6 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 27869184
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I15I_{15}^{*} additive 1 6 25 7
33 22 IIIIII^{*} additive 1 2 9 0
55 44 I3I_{3}^{*} additive 1 2 9 3
3131 33 I3I_{3} split multiplicative -1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[4, 3, 9, 7], [1801, 6, 1683, 19], [2634, 1079, 2477, 3546], [3715, 6, 3714, 7], [743, 3714, 2229, 3701], [2791, 6, 933, 19], [1859, 3714, 1857, 3701], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]]
 
GL(2,Integers(3720)).subgroup(gens)
 
Gens := [[4, 3, 9, 7], [1801, 6, 1683, 19], [2634, 1079, 2477, 3546], [3715, 6, 3714, 7], [743, 3714, 2229, 3701], [2791, 6, 933, 19], [1859, 3714, 1857, 3701], [1, 6, 0, 1], [3, 4, 8, 11], [1, 0, 6, 1]];
 
sub<GL(2,Integers(3720))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3720=233531 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 , index 1616, genus 00, and generators

(4397),(18016168319),(2634107924773546),(3715637147),(743371422293701),(2791693319),(1859371418573701),(1601),(34811),(1061)\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1801 & 6 \\ 1683 & 19 \end{array}\right),\left(\begin{array}{rr} 2634 & 1079 \\ 2477 & 3546 \end{array}\right),\left(\begin{array}{rr} 3715 & 6 \\ 3714 & 7 \end{array}\right),\left(\begin{array}{rr} 743 & 3714 \\ 2229 & 3701 \end{array}\right),\left(\begin{array}{rr} 2791 & 6 \\ 933 & 19 \end{array}\right),\left(\begin{array}{rr} 1859 & 3714 \\ 1857 & 3701 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3720])K:=\Q(E[3720]) is a degree-19747307520001974730752000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3720Z)\GL_2(\Z/3720\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 2325=35231 2325 = 3 \cdot 5^{2} \cdot 31
33 additive 22 1600=2652 1600 = 2^{6} \cdot 5^{2}
55 additive 1818 17856=263231 17856 = 2^{6} \cdot 3^{2} \cdot 31
3131 split multiplicative 3232 14400=263252 14400 = 2^{6} \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 446400mp consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 2790f1, its twist by 120-120.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.