Properties

Label 447700.g
Number of curves 22
Conductor 447700447700
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 447700.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
447700.g1 447700g2 [0,1,0,36364533,84416475937][0, -1, 0, -36364533, 84416475937] 750484394082304/578125750484394082304/578125 40967348125000000004096734812500000000 [][] 1399680013996800 2.87932.8793 Γ0(N)\Gamma_0(N)-optimal*
447700.g2 447700g1 [0,1,0,548533,60841937][0, -1, 0, -548533, 60841937] 2575826944/12663252575826944/1266325 89734879333000000008973487933300000000 [][] 46656004665600 2.32992.3299 Γ0(N)\Gamma_0(N)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 447700.g1.

Rank

sage: E.rank()
 

The elliptic curves in class 447700.g have rank 11.

Complex multiplication

The elliptic curves in class 447700.g do not have complex multiplication.

Modular form 447700.2.a.g

sage: E.q_eigenform(10)
 
qq3q72q94q13+4q19+O(q20)q - q^{3} - q^{7} - 2 q^{9} - 4 q^{13} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.