Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 447700.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
447700.g1 | 447700g2 | \([0, -1, 0, -36364533, 84416475937]\) | \(750484394082304/578125\) | \(4096734812500000000\) | \([]\) | \(13996800\) | \(2.8793\) | \(\Gamma_0(N)\)-optimal* |
447700.g2 | 447700g1 | \([0, -1, 0, -548533, 60841937]\) | \(2575826944/1266325\) | \(8973487933300000000\) | \([]\) | \(4665600\) | \(2.3299\) | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 447700.g have rank \(1\).
Complex multiplication
The elliptic curves in class 447700.g do not have complex multiplication.Modular form 447700.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.