sage:E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 448.b
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
448.b1 |
448g2 |
[0,1,0,−33,31] |
125000/49 |
1605632 |
[2] |
64 |
−0.11063
|
|
448.b2 |
448g1 |
[0,1,0,7,7] |
8000/7 |
−28672 |
[2] |
32 |
−0.45720
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 448.b have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
7 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
5 |
1+5T2 |
1.5.a
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1−4T+13T2 |
1.13.ae
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1+6T+19T2 |
1.19.g
|
23 |
1+8T+23T2 |
1.23.i
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 448.b do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.