sage:E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 448.d
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
448.d1 |
448a4 |
[0,0,0,−1196,15920] |
1443468546/7 |
917504 |
[4] |
128 |
0.34454
|
|
448.d2 |
448a3 |
[0,0,0,−236,−1104] |
11090466/2401 |
314703872 |
[2] |
128 |
0.34454
|
|
448.d3 |
448a2 |
[0,0,0,−76,240] |
740772/49 |
3211264 |
[2,2] |
64 |
−0.0020328
|
|
448.d4 |
448a1 |
[0,0,0,4,16] |
432/7 |
−114688 |
[2] |
32 |
−0.34861
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 448.d have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
7 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
5 |
1+2T+5T2 |
1.5.c
|
11 |
1−4T+11T2 |
1.11.ae
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+8T+19T2 |
1.19.i
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 448.d do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.