Properties

Label 448.d
Number of curves 44
Conductor 448448
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 448.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
448.d1 448a4 [0,0,0,1196,15920][0, 0, 0, -1196, 15920] 1443468546/71443468546/7 917504917504 [4][4] 128128 0.344540.34454  
448.d2 448a3 [0,0,0,236,1104][0, 0, 0, -236, -1104] 11090466/240111090466/2401 314703872314703872 [2][2] 128128 0.344540.34454  
448.d3 448a2 [0,0,0,76,240][0, 0, 0, -76, 240] 740772/49740772/49 32112643211264 [2,2][2, 2] 6464 0.0020328-0.0020328  
448.d4 448a1 [0,0,0,4,16][0, 0, 0, 4, 16] 432/7432/7 114688-114688 [2][2] 3232 0.34861-0.34861 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 448.d have rank 11.

Complex multiplication

The elliptic curves in class 448.d do not have complex multiplication.

Modular form 448.2.a.d

sage: E.q_eigenform(10)
 
q2q5q73q9+4q112q136q178q19+O(q20)q - 2 q^{5} - q^{7} - 3 q^{9} + 4 q^{11} - 2 q^{13} - 6 q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.