Properties

Label 450450hu7
Conductor 450450450450
Discriminant 6.533×10216.533\times 10^{21}
j-invariant 39678824820100339542909108961573524808366510 \frac{39678824820100339542909108961}{573524808366510}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x215988002755x+778111199230997y^2+xy+y=x^3-x^2-15988002755x+778111199230997 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z15988002755xz2+778111199230997z3y^2z+xyz+yz^2=x^3-x^2z-15988002755xz^2+778111199230997z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3255808044075x+49798860942739750y^2=x^3-255808044075x+49798860942739750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -15988002755, 778111199230997])
 
gp: E = ellinit([1, -1, 1, -15988002755, 778111199230997])
 
magma: E := EllipticCurve([1, -1, 1, -15988002755, 778111199230997]);
 
oscar: E = elliptic_curve([1, -1, 1, -15988002755, 778111199230997])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(292011/4,292015/8)(292011/4, -292015/8)0022

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  450450 450450  = 23252711132 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  65328060202997779687506532806020299777968750 = 2322577114132 \cdot 3^{22} \cdot 5^{7} \cdot 7 \cdot 11^{4} \cdot 13
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  39678824820100339542909108961573524808366510 \frac{39678824820100339542909108961}{573524808366510}  = 21316517111413114393237023932^{-1} \cdot 3^{-16} \cdot 5^{-1} \cdot 7^{-1} \cdot 11^{-4} \cdot 13^{-1} \cdot 1439^{3} \cdot 2370239^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 4.19183989615515190066607147744.1918398961551519006660714774
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.83781479560404686766806919232.8378147956040468676680691923
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.010203967562291.01020396756229
Szpiro ratio: σm\sigma_{m} ≈ 6.3065679433389366.306567943338936

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0680962377775226842375299415690.068096237777522684237529941569
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 64 64  = 122221221 1\cdot2^{2}\cdot2^{2}\cdot1\cdot2^{2}\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 4.35815921776145179120191626044.3581592177614517912019162604
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  44 = 222^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.358159218L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor240.0680961.00000064224.358159218\displaystyle 4.358159218 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.068096 \cdot 1.000000 \cdot 64}{2^2} \approx 4.358159218

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 450450.2.a.hu

q+q2+q4q7+q8+q11q13q14+q16+2q174q19+O(q20) q + q^{2} + q^{4} - q^{7} + q^{8} + q^{11} - q^{13} - q^{14} + q^{16} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 402653184
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: not computed* (one of 5 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that curve 450450hu1 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} split multiplicative -1 1 1 1
33 44 I16I_{16}^{*} additive -1 2 22 16
55 44 I1I_{1}^{*} additive 1 2 7 1
77 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1111 44 I4I_{4} split multiplicative -1 1 4 4
1313 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.24.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[23, 18, 477918, 478475], [180194, 31, 179069, 478020], [1, 0, 32, 1], [1, 32, 0, 1], [5, 28, 68, 381], [270300, 31, 149999, 480324], [384368, 480455, 94057, 477294], [205952, 29, 71467, 2562], [436823, 26, 346902, 477611], [480449, 32, 480448, 33], [110896, 25, 408599, 3186], [160159, 480448, 160144, 479967]]
 
GL(2,Integers(480480)).subgroup(gens)
 
Gens := [[23, 18, 477918, 478475], [180194, 31, 179069, 478020], [1, 0, 32, 1], [1, 32, 0, 1], [5, 28, 68, 381], [270300, 31, 149999, 480324], [384368, 480455, 94057, 477294], [205952, 29, 71467, 2562], [436823, 26, 346902, 477611], [480449, 32, 480448, 33], [110896, 25, 408599, 3186], [160159, 480448, 160144, 479967]];
 
sub<GL(2,Integers(480480))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 480480=253571113 480480 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 , index 768768, genus 1313, and generators

(2318477918478475),(18019431179069478020),(10321),(13201),(52868381),(27030031149999480324),(38436848045594057477294),(20595229714672562),(43682326346902477611),(4804493248044833),(110896254085993186),(160159480448160144479967)\left(\begin{array}{rr} 23 & 18 \\ 477918 & 478475 \end{array}\right),\left(\begin{array}{rr} 180194 & 31 \\ 179069 & 478020 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 270300 & 31 \\ 149999 & 480324 \end{array}\right),\left(\begin{array}{rr} 384368 & 480455 \\ 94057 & 477294 \end{array}\right),\left(\begin{array}{rr} 205952 & 29 \\ 71467 & 2562 \end{array}\right),\left(\begin{array}{rr} 436823 & 26 \\ 346902 & 477611 \end{array}\right),\left(\begin{array}{rr} 480449 & 32 \\ 480448 & 33 \end{array}\right),\left(\begin{array}{rr} 110896 & 25 \\ 408599 & 3186 \end{array}\right),\left(\begin{array}{rr} 160159 & 480448 \\ 160144 & 479967 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[480480])K:=\Q(E[480480]) is a degree-82271757485998080008227175748599808000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/480480Z)\GL_2(\Z/480480\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 20475=3252713 20475 = 3^{2} \cdot 5^{2} \cdot 7 \cdot 13
33 additive 88 50050=25271113 50050 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13
55 additive 1818 18018=23271113 18018 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13
77 nonsplit multiplicative 88 64350=232521113 64350 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13
1111 split multiplicative 1212 40950=23252713 40950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13
1313 nonsplit multiplicative 1414 34650=23252711 34650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4, 8 and 16.
Its isogeny class 450450hu consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 30030bh8, its twist by 15-15.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.