Properties

Label 45084.f
Number of curves $4$
Conductor $45084$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 45084.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
45084.f1 45084h3 \([0, -1, 0, -1431513, -88511634]\) \(840033089536000/477272151837\) \(184323031947905028048\) \([2]\) \(1244160\) \(2.5785\)  
45084.f2 45084h1 \([0, -1, 0, -911313, 335149650]\) \(216727177216000/2738853\) \(1057748052293712\) \([2]\) \(414720\) \(2.0292\) \(\Gamma_0(N)\)-optimal
45084.f3 45084h2 \([0, -1, 0, -886748, 354045048]\) \(-12479332642000/1526829993\) \(-9434614862670596352\) \([2]\) \(829440\) \(2.3758\)  
45084.f4 45084h4 \([0, -1, 0, 5667772, -710409000]\) \(3258571509326000/1920843121977\) \(-11869307749093185001728\) \([2]\) \(2488320\) \(2.9251\)  

Rank

sage: E.rank()
 

The elliptic curves in class 45084.f have rank \(1\).

Complex multiplication

The elliptic curves in class 45084.f do not have complex multiplication.

Modular form 45084.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{7} + q^{9} + q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.