Properties

Label 45084h
Number of curves 44
Conductor 4508445084
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 45084h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
45084.f2 45084h1 [0,1,0,911313,335149650][0, -1, 0, -911313, 335149650] 216727177216000/2738853216727177216000/2738853 10577480522937121057748052293712 [2][2] 414720414720 2.02922.0292 Γ0(N)\Gamma_0(N)-optimal
45084.f3 45084h2 [0,1,0,886748,354045048][0, -1, 0, -886748, 354045048] 12479332642000/1526829993-12479332642000/1526829993 9434614862670596352-9434614862670596352 [2][2] 829440829440 2.37582.3758  
45084.f1 45084h3 [0,1,0,1431513,88511634][0, -1, 0, -1431513, -88511634] 840033089536000/477272151837840033089536000/477272151837 184323031947905028048184323031947905028048 [2][2] 12441601244160 2.57852.5785  
45084.f4 45084h4 [0,1,0,5667772,710409000][0, -1, 0, 5667772, -710409000] 3258571509326000/19208431219773258571509326000/1920843121977 11869307749093185001728-11869307749093185001728 [2][2] 24883202488320 2.92512.9251  

Rank

sage: E.rank()
 

The elliptic curves in class 45084h have rank 11.

Complex multiplication

The elliptic curves in class 45084h do not have complex multiplication.

Modular form 45084.2.a.h

sage: E.q_eigenform(10)
 
qq3+4q7+q9+q13+2q19+O(q20)q - q^{3} + 4 q^{7} + q^{9} + q^{13} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.