E = EllipticCurve("h1")
E.isogeny_class()
Elliptic curves in class 45084h
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
45084.f2 |
45084h1 |
[0,−1,0,−911313,335149650] |
216727177216000/2738853 |
1057748052293712 |
[2] |
414720 |
2.0292
|
Γ0(N)-optimal |
45084.f3 |
45084h2 |
[0,−1,0,−886748,354045048] |
−12479332642000/1526829993 |
−9434614862670596352 |
[2] |
829440 |
2.3758
|
|
45084.f1 |
45084h3 |
[0,−1,0,−1431513,−88511634] |
840033089536000/477272151837 |
184323031947905028048 |
[2] |
1244160 |
2.5785
|
|
45084.f4 |
45084h4 |
[0,−1,0,5667772,−710409000] |
3258571509326000/1920843121977 |
−11869307749093185001728 |
[2] |
2488320 |
2.9251
|
|
The elliptic curves in class 45084h have
rank 1.
The elliptic curves in class 45084h do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.