Properties

Label 456475.k
Number of curves 22
Conductor 456475456475
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 456475.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
456475.k1 456475k2 [1,1,0,593117,171499084][1, -1, 0, -593117, -171499084] 13312053/36113312053/361 625759431330078125625759431330078125 [2][2] 48384004838400 2.19512.1951 Γ0(N)\Gamma_0(N)-optimal*
456475.k2 456475k1 [1,1,0,7508,8729709][1, -1, 0, 7508, -8729709] 27/1927/19 32934706912109375-32934706912109375 [2][2] 24192002419200 1.84851.8485 Γ0(N)\Gamma_0(N)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 456475.k1.

Rank

sage: E.rank()
 

The elliptic curves in class 456475.k have rank 00.

Complex multiplication

The elliptic curves in class 456475.k do not have complex multiplication.

Modular form 456475.2.a.k

sage: E.q_eigenform(10)
 
q+q2q42q73q83q9+4q112q132q14q16+4q173q18+q19+O(q20)q + q^{2} - q^{4} - 2 q^{7} - 3 q^{8} - 3 q^{9} + 4 q^{11} - 2 q^{13} - 2 q^{14} - q^{16} + 4 q^{17} - 3 q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.