Show commands:
SageMath
E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 456475.k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
456475.k1 | 456475k2 | \([1, -1, 0, -593117, -171499084]\) | \(13312053/361\) | \(625759431330078125\) | \([2]\) | \(4838400\) | \(2.1951\) | \(\Gamma_0(N)\)-optimal* |
456475.k2 | 456475k1 | \([1, -1, 0, 7508, -8729709]\) | \(27/19\) | \(-32934706912109375\) | \([2]\) | \(2419200\) | \(1.8485\) | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 456475.k have rank \(0\).
Complex multiplication
The elliptic curves in class 456475.k do not have complex multiplication.Modular form 456475.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.