Properties

Label 456475.k
Number of curves $2$
Conductor $456475$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 456475.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
456475.k1 456475k2 \([1, -1, 0, -593117, -171499084]\) \(13312053/361\) \(625759431330078125\) \([2]\) \(4838400\) \(2.1951\) \(\Gamma_0(N)\)-optimal*
456475.k2 456475k1 \([1, -1, 0, 7508, -8729709]\) \(27/19\) \(-32934706912109375\) \([2]\) \(2419200\) \(1.8485\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 456475.k1.

Rank

sage: E.rank()
 

The elliptic curves in class 456475.k have rank \(0\).

Complex multiplication

The elliptic curves in class 456475.k do not have complex multiplication.

Modular form 456475.2.a.k

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 2 q^{7} - 3 q^{8} - 3 q^{9} + 4 q^{11} - 2 q^{13} - 2 q^{14} - q^{16} + 4 q^{17} - 3 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.