Properties

Label 4600.l
Number of curves $1$
Conductor $4600$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 4600.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4600.l1 4600n1 \([0, 1, 0, -608, -6112]\) \(-19450850/529\) \(-677120000\) \([]\) \(1824\) \(0.47592\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4600.l1 has rank \(0\).

Complex multiplication

The elliptic curves in class 4600.l do not have complex multiplication.

Modular form 4600.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{7} - 2 q^{9} + 3 q^{11} - 2 q^{13} - q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display