Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 462.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
462.c1 | 462b3 | \([1, 1, 0, -92004, 10703088]\) | \(86129359107301290313/9166294368\) | \(9166294368\) | \([2]\) | \(1920\) | \(1.3393\) | |
462.c2 | 462b2 | \([1, 1, 0, -5764, 164560]\) | \(21184262604460873/216872764416\) | \(216872764416\) | \([2, 2]\) | \(960\) | \(0.99273\) | |
462.c3 | 462b4 | \([1, 1, 0, -1444, 410800]\) | \(-333345918055753/72923718045024\) | \(-72923718045024\) | \([2]\) | \(1920\) | \(1.3393\) | |
462.c4 | 462b1 | \([1, 1, 0, -644, -2352]\) | \(29609739866953/15259926528\) | \(15259926528\) | \([2]\) | \(480\) | \(0.64616\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 462.c have rank \(0\).
Complex multiplication
The elliptic curves in class 462.c do not have complex multiplication.Modular form 462.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.