Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 462f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
462.g4 | 462f1 | \([1, 0, 0, -97, 1337]\) | \(-100999381393/723148272\) | \(-723148272\) | \([4]\) | \(192\) | \(0.38308\) | \(\Gamma_0(N)\)-optimal |
462.g3 | 462f2 | \([1, 0, 0, -2517, 48285]\) | \(1763535241378513/4612311396\) | \(4612311396\) | \([2, 2]\) | \(384\) | \(0.72966\) | |
462.g2 | 462f3 | \([1, 0, 0, -3507, 6507]\) | \(4770223741048753/2740574865798\) | \(2740574865798\) | \([2]\) | \(768\) | \(1.0762\) | |
462.g1 | 462f4 | \([1, 0, 0, -40247, 3104415]\) | \(7209828390823479793/49509306\) | \(49509306\) | \([2]\) | \(768\) | \(1.0762\) |
Rank
sage: E.rank()
The elliptic curves in class 462f have rank \(0\).
Complex multiplication
The elliptic curves in class 462f do not have complex multiplication.Modular form 462.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.