Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 462g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
462.f4 | 462g1 | -optimal | ||||||
462.f3 | 462g2 | |||||||
462.f2 | 462g3 | |||||||
462.f1 | 462g4 |
Rank
sage: E.rank()
The elliptic curves in class 462g have rank .
Complex multiplication
The elliptic curves in class 462g do not have complex multiplication.Modular form 462.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The entry is the smallest degree of a cyclic isogeny between the -th and -th curve in the isogeny class, in the Cremona numbering.
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.