Properties

Label 462g
Number of curves 44
Conductor 462462
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("g1")
 
E.isogeny_class()
 

Elliptic curves in class 462g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
462.f4 462g1 [1,0,0,77,161][1, 0, 0, 77, 161] 50447927375/3951763250447927375/39517632 39517632-39517632 [6][6] 9696 0.145680.14568 Γ0(N)\Gamma_0(N)-optimal
462.f3 462g2 [1,0,0,363,1305][1, 0, 0, -363, 1305] 5290763640625/22915735925290763640625/2291573592 22915735922291573592 [6][6] 192192 0.492250.49225  
462.f2 462g3 [1,0,0,823,11611][1, 0, 0, -823, -11611] 61653281712625/21875235228-61653281712625/21875235228 21875235228-21875235228 [2][2] 288288 0.694980.69498  
462.f1 462g4 [1,0,0,14133,647829][1, 0, 0, -14133, -647829] 312196988566716625/25367712678312196988566716625/25367712678 2536771267825367712678 [2][2] 576576 1.04161.0416  

Rank

sage: E.rank()
 

The elliptic curves in class 462g have rank 00.

Complex multiplication

The elliptic curves in class 462g do not have complex multiplication.

Modular form 462.2.a.g

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q6+q7+q8+q9q11+q12+2q13+q14+q16+q18+2q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{6} + q^{7} + q^{8} + q^{9} - q^{11} + q^{12} + 2 q^{13} + q^{14} + q^{16} + q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.