Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 462g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
462.f4 | 462g1 | \([1, 0, 0, 77, 161]\) | \(50447927375/39517632\) | \(-39517632\) | \([6]\) | \(96\) | \(0.14568\) | \(\Gamma_0(N)\)-optimal |
462.f3 | 462g2 | \([1, 0, 0, -363, 1305]\) | \(5290763640625/2291573592\) | \(2291573592\) | \([6]\) | \(192\) | \(0.49225\) | |
462.f2 | 462g3 | \([1, 0, 0, -823, -11611]\) | \(-61653281712625/21875235228\) | \(-21875235228\) | \([2]\) | \(288\) | \(0.69498\) | |
462.f1 | 462g4 | \([1, 0, 0, -14133, -647829]\) | \(312196988566716625/25367712678\) | \(25367712678\) | \([2]\) | \(576\) | \(1.0416\) |
Rank
sage: E.rank()
The elliptic curves in class 462g have rank \(0\).
Complex multiplication
The elliptic curves in class 462g do not have complex multiplication.Modular form 462.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.