Properties

Label 46410.bz
Number of curves $4$
Conductor $46410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bz1")
 
E.isogeny_class()
 

Elliptic curves in class 46410.bz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.bz1 46410ca4 \([1, 0, 0, -73171, 7584245]\) \(43325247696520145329/183535468285260\) \(183535468285260\) \([2]\) \(270336\) \(1.5912\)  
46410.bz2 46410ca2 \([1, 0, 0, -6871, -13735]\) \(35874636409222129/20685941312400\) \(20685941312400\) \([2, 2]\) \(135168\) \(1.2446\)  
46410.bz3 46410ca1 \([1, 0, 0, -4871, -130935]\) \(12781554414694129/36385440000\) \(36385440000\) \([2]\) \(67584\) \(0.89802\) \(\Gamma_0(N)\)-optimal
46410.bz4 46410ca3 \([1, 0, 0, 27429, -102915]\) \(2282194455855813071/1325495413520460\) \(-1325495413520460\) \([2]\) \(270336\) \(1.5912\)  

Rank

sage: E.rank()
 

The elliptic curves in class 46410.bz have rank \(1\).

Complex multiplication

The elliptic curves in class 46410.bz do not have complex multiplication.

Modular form 46410.2.a.bz

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} - q^{13} - q^{14} - q^{15} + q^{16} - q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.