Properties

Label 46410.cn
Number of curves $6$
Conductor $46410$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cn1")
 
E.isogeny_class()
 

Elliptic curves in class 46410.cn

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.cn1 46410cm6 \([1, 0, 0, -73322765620, -7595474963359738]\) \(43595355616903186726969048523604598081/306218213075771927833557128906250\) \(306218213075771927833557128906250\) \([2]\) \(270532608\) \(5.0663\)  
46410.cn2 46410cm4 \([1, 0, 0, -7562905090, 54672107453600]\) \(47839833887939781795850621588688161/26393794292755443609008789062500\) \(26393794292755443609008789062500\) \([2, 2]\) \(135266304\) \(4.7198\)  
46410.cn3 46410cm2 \([1, 0, 0, -5766634510, 168310291664372]\) \(21207574048850823872792738495132641/34982717474287728110306250000\) \(34982717474287728110306250000\) \([2, 4]\) \(67633152\) \(4.3732\)  
46410.cn4 46410cm1 \([1, 0, 0, -5764349630, 168450516120900]\) \(21182375175311718755156119308023521/57778579333189522080000\) \(57778579333189522080000\) \([8]\) \(33816576\) \(4.0266\) \(\Gamma_0(N)\)-optimal
46410.cn5 46410cm3 \([1, 0, 0, -4006922010, 272974119796872]\) \(-7114696532582636527413245800532641/28073201392582203302585928742500\) \(-28073201392582203302585928742500\) \([4]\) \(135266304\) \(4.7198\)  
46410.cn6 46410cm5 \([1, 0, 0, 29456626160, 431982573859850]\) \(2826654455041045345083039379223811839/1716409549902715755405793403906250\) \(-1716409549902715755405793403906250\) \([2]\) \(270532608\) \(5.0663\)  

Rank

sage: E.rank()
 

The elliptic curves in class 46410.cn have rank \(0\).

Complex multiplication

The elliptic curves in class 46410.cn do not have complex multiplication.

Modular form 46410.2.a.cn

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} + q^{13} - q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 8 & 4 \\ 2 & 1 & 2 & 4 & 4 & 2 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 8 & 4 & 2 & 1 & 4 & 8 \\ 8 & 4 & 2 & 4 & 1 & 8 \\ 4 & 2 & 4 & 8 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.