Properties

Label 46410.cn
Number of curves 66
Conductor 4641046410
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Elliptic curves in class 46410.cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.cn1 46410cm6 [1,0,0,73322765620,7595474963359738][1, 0, 0, -73322765620, -7595474963359738] 43595355616903186726969048523604598081/30621821307577192783355712890625043595355616903186726969048523604598081/306218213075771927833557128906250 306218213075771927833557128906250306218213075771927833557128906250 [2][2] 270532608270532608 5.06635.0663  
46410.cn2 46410cm4 [1,0,0,7562905090,54672107453600][1, 0, 0, -7562905090, 54672107453600] 47839833887939781795850621588688161/2639379429275544360900878906250047839833887939781795850621588688161/26393794292755443609008789062500 2639379429275544360900878906250026393794292755443609008789062500 [2,2][2, 2] 135266304135266304 4.71984.7198  
46410.cn3 46410cm2 [1,0,0,5766634510,168310291664372][1, 0, 0, -5766634510, 168310291664372] 21207574048850823872792738495132641/3498271747428772811030625000021207574048850823872792738495132641/34982717474287728110306250000 3498271747428772811030625000034982717474287728110306250000 [2,4][2, 4] 6763315267633152 4.37324.3732  
46410.cn4 46410cm1 [1,0,0,5764349630,168450516120900][1, 0, 0, -5764349630, 168450516120900] 21182375175311718755156119308023521/5777857933318952208000021182375175311718755156119308023521/57778579333189522080000 5777857933318952208000057778579333189522080000 [8][8] 3381657633816576 4.02664.0266 Γ0(N)\Gamma_0(N)-optimal
46410.cn5 46410cm3 [1,0,0,4006922010,272974119796872][1, 0, 0, -4006922010, 272974119796872] 7114696532582636527413245800532641/28073201392582203302585928742500-7114696532582636527413245800532641/28073201392582203302585928742500 28073201392582203302585928742500-28073201392582203302585928742500 [4][4] 135266304135266304 4.71984.7198  
46410.cn6 46410cm5 [1,0,0,29456626160,431982573859850][1, 0, 0, 29456626160, 431982573859850] 2826654455041045345083039379223811839/17164095499027157554057934039062502826654455041045345083039379223811839/1716409549902715755405793403906250 1716409549902715755405793403906250-1716409549902715755405793403906250 [2][2] 270532608270532608 5.06635.0663  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 46410.cn have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
331T1 - T
551T1 - T
771+T1 + T
13131T1 - T
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 46410.cn do not have complex multiplication.

Modular form 46410.2.a.cn

Copy content sage:E.q_eigenform(10)
 
q+q2+q3+q4+q5+q6q7+q8+q9+q10+4q11+q12+q13q14+q15+q16+q17+q18+4q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} + q^{13} - q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(124884212442421224842148842418424881)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 8 & 4 \\ 2 & 1 & 2 & 4 & 4 & 2 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 8 & 4 & 2 & 1 & 4 & 8 \\ 8 & 4 & 2 & 4 & 1 & 8 \\ 4 & 2 & 4 & 8 & 8 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.