sage:E = EllipticCurve("ct1")
E.isogeny_class()
Elliptic curves in class 46410.ct
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
46410.ct1 |
46410cs4 |
[1,0,0,−235935,−2888403] |
1452449166347993289841/836982490583229900 |
836982490583229900 |
[2] |
1327104 |
2.1286
|
|
46410.ct2 |
46410cs2 |
[1,0,0,−156435,23801697] |
423375444074086161841/3800979000000 |
3800979000000 |
[6] |
442368 |
1.5793
|
|
46410.ct3 |
46410cs1 |
[1,0,0,−9555,389025] |
−96475852985868721/9816049152000 |
−9816049152000 |
[6] |
221184 |
1.2327
|
Γ0(N)-optimal |
46410.ct4 |
46410cs3 |
[1,0,0,58845,−353295] |
22534708906265708879/13096347846407280 |
−13096347846407280 |
[2] |
663552 |
1.7820
|
|
sage:E.rank()
The elliptic curves in class 46410.ct have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1−T |
5 | 1−T |
7 | 1−T |
13 | 1−T |
17 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1−6T+11T2 |
1.11.ag
|
19 |
1−8T+19T2 |
1.19.ai
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 46410.ct do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1362312662132631⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.