Show commands:
SageMath
E = EllipticCurve("ct1")
E.isogeny_class()
Elliptic curves in class 46410.ct
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
46410.ct1 | 46410cs4 | \([1, 0, 0, -235935, -2888403]\) | \(1452449166347993289841/836982490583229900\) | \(836982490583229900\) | \([2]\) | \(1327104\) | \(2.1286\) | |
46410.ct2 | 46410cs2 | \([1, 0, 0, -156435, 23801697]\) | \(423375444074086161841/3800979000000\) | \(3800979000000\) | \([6]\) | \(442368\) | \(1.5793\) | |
46410.ct3 | 46410cs1 | \([1, 0, 0, -9555, 389025]\) | \(-96475852985868721/9816049152000\) | \(-9816049152000\) | \([6]\) | \(221184\) | \(1.2327\) | \(\Gamma_0(N)\)-optimal |
46410.ct4 | 46410cs3 | \([1, 0, 0, 58845, -353295]\) | \(22534708906265708879/13096347846407280\) | \(-13096347846407280\) | \([2]\) | \(663552\) | \(1.7820\) |
Rank
sage: E.rank()
The elliptic curves in class 46410.ct have rank \(0\).
Complex multiplication
The elliptic curves in class 46410.ct do not have complex multiplication.Modular form 46410.2.a.ct
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.