Properties

Label 46410.k
Number of curves 44
Conductor 4641046410
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 46410.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.k1 46410h4 [1,1,0,6008,119538][1, 1, 0, -6008, -119538] 23989788887201929/796584140625023989788887201929/7965841406250 79658414062507965841406250 [2][2] 147456147456 1.17831.1783  
46410.k2 46410h2 [1,1,0,2438,43968][1, 1, 0, -2438, 43968] 1603626125868649/538472025001603626125868649/53847202500 5384720250053847202500 [2,2][2, 2] 7372873728 0.831680.83168  
46410.k3 46410h1 [1,1,0,2418,44772][1, 1, 0, -2418, 44772] 1564491509212969/18564001564491509212969/1856400 18564001856400 [2][2] 3686436864 0.485110.48511 Γ0(N)\Gamma_0(N)-optimal
46410.k4 46410h3 [1,1,0,812,156418][1, 1, 0, 812, 156418] 59095693799351/1055811094065059095693799351/10558110940650 10558110940650-10558110940650 [2][2] 147456147456 1.17831.1783  

Rank

sage: E.rank()
 

The elliptic curves in class 46410.k have rank 11.

Complex multiplication

The elliptic curves in class 46410.k do not have complex multiplication.

Modular form 46410.2.a.k

sage: E.q_eigenform(10)
 
qq2q3+q4q5+q6+q7q8+q9+q10q12q13q14+q15+q16+q17q18+4q19+O(q20)q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - q^{12} - q^{13} - q^{14} + q^{15} + q^{16} + q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.