E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 46410.k
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
46410.k1 |
46410h4 |
[1,1,0,−6008,−119538] |
23989788887201929/7965841406250 |
7965841406250 |
[2] |
147456 |
1.1783
|
|
46410.k2 |
46410h2 |
[1,1,0,−2438,43968] |
1603626125868649/53847202500 |
53847202500 |
[2,2] |
73728 |
0.83168
|
|
46410.k3 |
46410h1 |
[1,1,0,−2418,44772] |
1564491509212969/1856400 |
1856400 |
[2] |
36864 |
0.48511
|
Γ0(N)-optimal |
46410.k4 |
46410h3 |
[1,1,0,812,156418] |
59095693799351/10558110940650 |
−10558110940650 |
[2] |
147456 |
1.1783
|
|
The elliptic curves in class 46410.k have
rank 1.
The elliptic curves in class 46410.k do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.