Properties

Label 46410.k
Number of curves $4$
Conductor $46410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 46410.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.k1 46410h4 \([1, 1, 0, -6008, -119538]\) \(23989788887201929/7965841406250\) \(7965841406250\) \([2]\) \(147456\) \(1.1783\)  
46410.k2 46410h2 \([1, 1, 0, -2438, 43968]\) \(1603626125868649/53847202500\) \(53847202500\) \([2, 2]\) \(73728\) \(0.83168\)  
46410.k3 46410h1 \([1, 1, 0, -2418, 44772]\) \(1564491509212969/1856400\) \(1856400\) \([2]\) \(36864\) \(0.48511\) \(\Gamma_0(N)\)-optimal
46410.k4 46410h3 \([1, 1, 0, 812, 156418]\) \(59095693799351/10558110940650\) \(-10558110940650\) \([2]\) \(147456\) \(1.1783\)  

Rank

sage: E.rank()
 

The elliptic curves in class 46410.k have rank \(1\).

Complex multiplication

The elliptic curves in class 46410.k do not have complex multiplication.

Modular form 46410.2.a.k

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - q^{12} - q^{13} - q^{14} + q^{15} + q^{16} + q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.