Properties

Label 46410.p
Number of curves 44
Conductor 4641046410
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Elliptic curves in class 46410.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.p1 46410n4 [1,1,0,740012,245331216][1, 1, 0, -740012, -245331216] 44816807438220995641801/951271858992044816807438220995641801/9512718589920 95127185899209512718589920 [2][2] 491520491520 1.87581.8758  
46410.p2 46410n3 [1,1,0,90092,4453296][1, 1, 0, -90092, 4453296] 80870462846141298121/3808763562786000080870462846141298121/38087635627860000 3808763562786000038087635627860000 [2][2] 491520491520 1.87581.8758  
46410.p3 46410n2 [1,1,0,46412,3819696][1, 1, 0, -46412, -3819696] 11056793118237203401/15935325719040011056793118237203401/159353257190400 159353257190400159353257190400 [2,2][2, 2] 245760245760 1.52921.5292  
46410.p4 46410n1 [1,1,0,332,160944][1, 1, 0, -332, -160944] 4066120948681/11168482590720-4066120948681/11168482590720 11168482590720-11168482590720 [2][2] 122880122880 1.18261.1826 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 46410.p have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331+T1 + T
551T1 - T
771T1 - T
13131+T1 + T
17171+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+11T2 1 + 11 T^{2} 1.11.a
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 46410.p do not have complex multiplication.

Modular form 46410.2.a.p

Copy content sage:E.q_eigenform(10)
 
qq2q3+q4+q5+q6+q7q8+q9q10q12q13q14q15+q16q17q18+4q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - q^{12} - q^{13} - q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.