sage:E = EllipticCurve("p1")
E.isogeny_class()
Elliptic curves in class 46410.p
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
46410.p1 |
46410n4 |
[1,1,0,−740012,−245331216] |
44816807438220995641801/9512718589920 |
9512718589920 |
[2] |
491520 |
1.8758
|
|
46410.p2 |
46410n3 |
[1,1,0,−90092,4453296] |
80870462846141298121/38087635627860000 |
38087635627860000 |
[2] |
491520 |
1.8758
|
|
46410.p3 |
46410n2 |
[1,1,0,−46412,−3819696] |
11056793118237203401/159353257190400 |
159353257190400 |
[2,2] |
245760 |
1.5292
|
|
46410.p4 |
46410n1 |
[1,1,0,−332,−160944] |
−4066120948681/11168482590720 |
−11168482590720 |
[2] |
122880 |
1.1826
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 46410.p have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1−T |
7 | 1−T |
13 | 1+T |
17 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+11T2 |
1.11.a
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 46410.p do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.