Properties

Label 46410.s
Number of curves $4$
Conductor $46410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 46410.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.s1 46410r4 \([1, 1, 0, -125722, 17037406]\) \(219767239605025443241/1009792505562750\) \(1009792505562750\) \([2]\) \(442368\) \(1.7298\)  
46410.s2 46410r2 \([1, 1, 0, -11972, -47844]\) \(189793142380263241/109040585062500\) \(109040585062500\) \([2, 2]\) \(221184\) \(1.3832\)  
46410.s3 46410r1 \([1, 1, 0, -8592, -309456]\) \(70159339776282121/183532986000\) \(183532986000\) \([2]\) \(110592\) \(1.0366\) \(\Gamma_0(N)\)-optimal
46410.s4 46410r3 \([1, 1, 0, 47698, -322326]\) \(12000794336358249239/6995491699218750\) \(-6995491699218750\) \([2]\) \(442368\) \(1.7298\)  

Rank

sage: E.rank()
 

The elliptic curves in class 46410.s have rank \(1\).

Complex multiplication

The elliptic curves in class 46410.s do not have complex multiplication.

Modular form 46410.2.a.s

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} + 4 q^{11} - q^{12} + q^{13} - q^{14} - q^{15} + q^{16} + q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.