Properties

Label 46410.t
Number of curves $4$
Conductor $46410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 46410.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.t1 46410w4 \([1, 0, 1, -114321714, 470469100036]\) \(165237984118746893981597764249/573648406879275000000\) \(573648406879275000000\) \([2]\) \(7962624\) \(3.2028\)  
46410.t2 46410w2 \([1, 0, 1, -7246194, 7131909892]\) \(42077845747243642058108569/2373576194711554560000\) \(2373576194711554560000\) \([2, 2]\) \(3981312\) \(2.8563\)  
46410.t3 46410w1 \([1, 0, 1, -1327474, -448786684]\) \(258702909467786448334489/62746322151879475200\) \(62746322151879475200\) \([2]\) \(1990656\) \(2.5097\) \(\Gamma_0(N)\)-optimal
46410.t4 46410w3 \([1, 0, 1, 5129806, 28982975492]\) \(14928860414851539366915431/371514241287132224299200\) \(-371514241287132224299200\) \([2]\) \(7962624\) \(3.2028\)  

Rank

sage: E.rank()
 

The elliptic curves in class 46410.t have rank \(1\).

Complex multiplication

The elliptic curves in class 46410.t do not have complex multiplication.

Modular form 46410.2.a.t

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} + q^{13} + q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.