Properties

Label 46410.v
Number of curves $1$
Conductor $46410$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 46410.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.v1 46410u1 \([1, 0, 1, -21270913919, -1195354834988974]\) \(-1064344357809524755498796847123988969/1331361849595148905218048000000\) \(-1331361849595148905218048000000\) \([]\) \(138600000\) \(4.6893\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 46410.v1 has rank \(1\).

Complex multiplication

The elliptic curves in class 46410.v do not have complex multiplication.

Modular form 46410.2.a.v

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 2 q^{11} + q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + q^{17} - q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display