Show commands:
SageMath
E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 46410.x
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
46410.x1 | 46410x1 | \([1, 0, 1, -29, -28]\) | \(2565726409/1206660\) | \(1206660\) | \([2]\) | \(8704\) | \(-0.13880\) | \(\Gamma_0(N)\)-optimal |
46410.x2 | 46410x2 | \([1, 0, 1, 101, -184]\) | \(115572468311/82841850\) | \(-82841850\) | \([2]\) | \(17408\) | \(0.20777\) |
Rank
sage: E.rank()
The elliptic curves in class 46410.x have rank \(1\).
Complex multiplication
The elliptic curves in class 46410.x do not have complex multiplication.Modular form 46410.2.a.x
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.