sage:E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 46410c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
46410.b3 |
46410c1 |
[1,1,0,−71018,−7312812] |
39613077168432499369/8661219840000 |
8661219840000 |
[2] |
172032 |
1.4764
|
Γ0(N)-optimal |
46410.b2 |
46410c2 |
[1,1,0,−79018,−5573612] |
54564527576482291369/18314631132033600 |
18314631132033600 |
[2,2] |
344064 |
1.8230
|
|
46410.b4 |
46410c3 |
[1,1,0,230382,−38184372] |
1352279296967264534231/1415615917112986680 |
−1415615917112986680 |
[2] |
688128 |
2.1696
|
|
46410.b1 |
46410c4 |
[1,1,0,−516418,138505948] |
15231025329261085948969/501037266310733880 |
501037266310733880 |
[2] |
688128 |
2.1696
|
|
sage:E.rank()
The elliptic curves in class 46410c have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1+T |
7 | 1+T |
13 | 1−T |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+11T2 |
1.11.a
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1−8T+23T2 |
1.23.ai
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 46410c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.