Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 46410c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
46410.b3 | 46410c1 | \([1, 1, 0, -71018, -7312812]\) | \(39613077168432499369/8661219840000\) | \(8661219840000\) | \([2]\) | \(172032\) | \(1.4764\) | \(\Gamma_0(N)\)-optimal |
46410.b2 | 46410c2 | \([1, 1, 0, -79018, -5573612]\) | \(54564527576482291369/18314631132033600\) | \(18314631132033600\) | \([2, 2]\) | \(344064\) | \(1.8230\) | |
46410.b4 | 46410c3 | \([1, 1, 0, 230382, -38184372]\) | \(1352279296967264534231/1415615917112986680\) | \(-1415615917112986680\) | \([2]\) | \(688128\) | \(2.1696\) | |
46410.b1 | 46410c4 | \([1, 1, 0, -516418, 138505948]\) | \(15231025329261085948969/501037266310733880\) | \(501037266310733880\) | \([2]\) | \(688128\) | \(2.1696\) |
Rank
sage: E.rank()
The elliptic curves in class 46410c have rank \(0\).
Complex multiplication
The elliptic curves in class 46410c do not have complex multiplication.Modular form 46410.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.