Properties

Label 46410c
Number of curves 44
Conductor 4641046410
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Elliptic curves in class 46410c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.b3 46410c1 [1,1,0,71018,7312812][1, 1, 0, -71018, -7312812] 39613077168432499369/866121984000039613077168432499369/8661219840000 86612198400008661219840000 [2][2] 172032172032 1.47641.4764 Γ0(N)\Gamma_0(N)-optimal
46410.b2 46410c2 [1,1,0,79018,5573612][1, 1, 0, -79018, -5573612] 54564527576482291369/1831463113203360054564527576482291369/18314631132033600 1831463113203360018314631132033600 [2,2][2, 2] 344064344064 1.82301.8230  
46410.b4 46410c3 [1,1,0,230382,38184372][1, 1, 0, 230382, -38184372] 1352279296967264534231/14156159171129866801352279296967264534231/1415615917112986680 1415615917112986680-1415615917112986680 [2][2] 688128688128 2.16962.1696  
46410.b1 46410c4 [1,1,0,516418,138505948][1, 1, 0, -516418, 138505948] 15231025329261085948969/50103726631073388015231025329261085948969/501037266310733880 501037266310733880501037266310733880 [2][2] 688128688128 2.16962.1696  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 46410c have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331+T1 + T
551+T1 + T
771+T1 + T
13131T1 - T
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+11T2 1 + 11 T^{2} 1.11.a
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 18T+23T2 1 - 8 T + 23 T^{2} 1.23.ai
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 46410c do not have complex multiplication.

Modular form 46410.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq2q3+q4q5+q6q7q8+q9+q10q12+q13+q14+q15+q16q17q18+4q19+O(q20)q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - q^{12} + q^{13} + q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.