Properties

Label 46410c
Number of curves $4$
Conductor $46410$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 46410c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46410.b3 46410c1 \([1, 1, 0, -71018, -7312812]\) \(39613077168432499369/8661219840000\) \(8661219840000\) \([2]\) \(172032\) \(1.4764\) \(\Gamma_0(N)\)-optimal
46410.b2 46410c2 \([1, 1, 0, -79018, -5573612]\) \(54564527576482291369/18314631132033600\) \(18314631132033600\) \([2, 2]\) \(344064\) \(1.8230\)  
46410.b4 46410c3 \([1, 1, 0, 230382, -38184372]\) \(1352279296967264534231/1415615917112986680\) \(-1415615917112986680\) \([2]\) \(688128\) \(2.1696\)  
46410.b1 46410c4 \([1, 1, 0, -516418, 138505948]\) \(15231025329261085948969/501037266310733880\) \(501037266310733880\) \([2]\) \(688128\) \(2.1696\)  

Rank

sage: E.rank()
 

The elliptic curves in class 46410c have rank \(0\).

Complex multiplication

The elliptic curves in class 46410c do not have complex multiplication.

Modular form 46410.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - q^{12} + q^{13} + q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.